2025屆安徽省合肥市廬江第三中學高三第一次高考模擬考試數(shù)學試題文試題含解析_第1頁
2025屆安徽省合肥市廬江第三中學高三第一次高考模擬考試數(shù)學試題文試題含解析_第2頁
2025屆安徽省合肥市廬江第三中學高三第一次高考模擬考試數(shù)學試題文試題含解析_第3頁
2025屆安徽省合肥市廬江第三中學高三第一次高考模擬考試數(shù)學試題文試題含解析_第4頁
2025屆安徽省合肥市廬江第三中學高三第一次高考模擬考試數(shù)學試題文試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省合肥市廬江第三中學高三第一次高考模擬考試數(shù)學試題文試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設分別是雙線的左、右焦點,為坐標原點,以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(位于軸右側),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.2.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.83.已知向量與的夾角為,,,則()A. B.0 C.0或 D.4.函數(shù)的部分圖像如圖所示,若,點的坐標為,若將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,則的最小值為()A. B. C. D.5.已知雙曲線的左,右焦點分別為、,過的直線l交雙曲線的右支于點P,以雙曲線的實軸為直徑的圓與直線l相切,切點為H,若,則雙曲線C的離心率為()A. B. C. D.6.在中,在邊上滿足,為的中點,則().A. B. C. D.7.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關關系,統(tǒng)計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關關系為()A.正相關,相關系數(shù)的值為B.負相關,相關系數(shù)的值為C.負相關,相關系數(shù)的值為D.正相關,相關負數(shù)的值為8.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.9.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.110.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內的面積為()A. B. C. D.11.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件12.某工廠一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個月的平均收入為萬元二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最小值為______.14.設向量,,且,則_________.15.在中,內角的對邊分別為,已知,則的面積為___________.16.已知等差數(shù)列滿足,,則的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年入冬時節(jié),長春市民為了迎接2022年北京冬奧會,增強身體素質,積極開展冰上體育鍛煉.現(xiàn)從速滑項目中隨機選出100名參與者,并由專業(yè)的評估機構對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統(tǒng)計,請將下列列聯(lián)表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)18.(12分)已知橢圓C的離心率為且經過點(1)求橢圓C的方程;(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以OA、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.19.(12分)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當時,求直線l的方程.20.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設為的中點,且,的平分線交于點,求線段的長.21.(12分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.22.(10分)已知函數(shù).(1)當時,求不等式的解集;(2)若關于的不等式的解集包含,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因為四邊形為菱形,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結合的思想,屬于基礎題.2.C【解析】

解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎題.3.B【解析】

由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.4.B【解析】

根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點與最低點的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.該題主要考查三角函數(shù)的圖象和性質,根據(jù)圖象求出函數(shù)的解析式是解決該題的關鍵,要求熟練掌握函數(shù)圖象之間的變換關系,屬于簡單題目.5.A【解析】

在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.本題考查雙曲線離心率的計算問題,處理雙曲線離心率問題的關鍵是建立三者間的關系,本題是一道中檔題.6.B【解析】

由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.本題考查平面向量的線性運算性質以及平面向量基本定理的應用,是一道基礎題.7.C【解析】

根據(jù)正負相關的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關.相關系數(shù)為負.故選:C.本題考查變量的相關關系,考查正相關和負相關的區(qū)別.掌握正負相關的定義是解題基礎.8.D【解析】

先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調遞增數(shù)列,所以,則,化簡得,所以.故選:D.本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調性求解參數(shù)范圍,難度一般.已知數(shù)列單調性,可根據(jù)之間的大小關系分析問題.9.A【解析】

由題意得到關于的等式,結合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.本題以天文學問題為背景,考查考生的數(shù)學應用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運算.10.B【解析】

根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結合的數(shù)學思想方法,考查分析思考與解決問題的能力,屬于難題.11.B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B本題考查了必要不充分條件的判定,考查了學生數(shù)學運算,邏輯推理能力,屬于基礎題.12.D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤.綜上,故選.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

作出可行域,平移基準直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準直線到處時,取得最小值為.故答案為:本小題主要考查線性規(guī)劃求最值,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.14.【解析】

根據(jù)向量的數(shù)量積的計算,以及向量的平方,簡單計算,可得結果.【詳解】由題可知:且由所以故答案為:本題考查向量的坐標計算,主要考查計算,屬基礎題.15.【解析】

由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:本題考查利用余弦定理求解三角形的面積,考查學生的計算能力,是一道基礎題.16.11【解析】

由等差數(shù)列的下標和性質可得,由即可求出公差,即可求解;【詳解】解:設等差數(shù)列的公差為,,又因為,解得故答案為:本題考查等差數(shù)列的通項公式及等差數(shù)列的性質的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系【解析】

(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據(jù)表格數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運動的人數(shù)為.完善列聯(lián)表如下:擅長不擅長合計男性203050女性104050合計3070100,對照表格可知,,不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.本小題主要考查根據(jù)頻率分布直方圖計算小長方形的高,考查列聯(lián)表獨立性檢驗,屬于基礎題.18.(1)(2)【解析】

(1)根據(jù)橢圓的離心率、橢圓上點的坐標以及列方程,由此求得,進而求得橢圓的方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理.根據(jù)平行四邊形的性質以及向量加法的幾何意義得到,由此求得點的坐標,將的坐標代入橢圓方程,化簡后可求得直線的斜率,由此求得直線的方程.【詳解】(1)由橢圓的離心率為,點在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設直線的斜率為,則直線的方程為,設,由消去得,所以,由已知得,所以,由于點都在橢圓上,所以,展開有,又,所以,經檢驗滿足,故直線的方程為.本小題主要考查根據(jù)橢圓的離心率和橢圓上一點的坐標求橢圓方程,考查直線和橢圓的位置關系,考查運算求解能力,屬于中檔題.19.(1)(2)或.【解析】

(1)圓的方程已知,根據(jù)條件列出方程組,解方程即得;(2)設,,顯然直線l的斜率存在,方法一:設直線l的方程為:,將直線方程和橢圓方程聯(lián)立,消去,可得,同理直線方程和圓方程聯(lián)立,可得,再由可解得,即得;方法二:設直線l的方程為:,與橢圓方程聯(lián)立,可得,將其與圓方程聯(lián)立,可得,由可解得,即得.【詳解】(1)記橢圓E的焦距為().右頂點在圓C上,右準線與圓C:相切.解得,,橢圓方程為:.(2)法1:設,,顯然直線l的斜率存在,設直線l的方程為:.直線方程和橢圓方程聯(lián)立,由方程組消去y得,整理得.由,解得.直線方程和圓方程聯(lián)立,由方程組消去y得,由,解得.又,則有.即,解得,故直線l的方程為或.分法2:設,,當直線l與x軸重合時,不符題意.設直線l的方程為:.由方程組消去x得,,解得.由方程組消去x得,,解得.又,則有.即,解得,故直線l的方程為或.本題考查求橢圓的標準方程,以及直線和橢圓的位置關系,考查學生的分析和運算能力.20.(1),;(2).【解析】

(1)根據(jù)面積公式和數(shù)量積性質求角及最大邊;(2)根據(jù)的長度求出,再根據(jù)面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因為在中,,所以,因為(當且僅當時取等),所以長的最小值為;(2)在三角形中,因為為中線,所以,,所以,因為,所以,所以,由(1)知,所以,或,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論