2024-2025學(xué)年湖北省松滋市四中高三第二次高考診斷數(shù)學(xué)試題含解析_第1頁
2024-2025學(xué)年湖北省松滋市四中高三第二次高考診斷數(shù)學(xué)試題含解析_第2頁
2024-2025學(xué)年湖北省松滋市四中高三第二次高考診斷數(shù)學(xué)試題含解析_第3頁
2024-2025學(xué)年湖北省松滋市四中高三第二次高考診斷數(shù)學(xué)試題含解析_第4頁
2024-2025學(xué)年湖北省松滋市四中高三第二次高考診斷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年湖北省松滋市四中高三第二次高考診斷數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.2.已知向量,,若,則()A. B. C. D.3.設(shè)集合,,則()A. B.C. D.4.我國著名數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”(注:如果一個大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個整數(shù)為素數(shù)),在不超過的素數(shù)中,隨機(jī)選取個不同的素數(shù)、,則的概率是()A. B. C. D.5.馬林●梅森是17世紀(jì)法國著名的數(shù)學(xué)家和修道士,也是當(dāng)時歐洲科學(xué)界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎(chǔ)上對2p﹣1作了大量的計算、驗證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素數(shù))的素數(shù),稱為梅森素數(shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是()A.3 B.4 C.5 D.66.圓心為且和軸相切的圓的方程是()A. B.C. D.7.如圖是一個幾何體的三視圖,則這個幾何體的體積為()A. B. C. D.8.由曲線圍成的封閉圖形的面積為()A. B. C. D.9.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③10.已知復(fù)數(shù),則()A. B. C. D.11.已知函數(shù),若,則a的取值范圍為()A. B. C. D.12.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或8二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線:(,),直線:與雙曲線的兩條漸近線分別交于,兩點.若(點為坐標(biāo)原點)的面積為32,且雙曲線的焦距為,則雙曲線的離心率為________.14.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.15.如圖,己知半圓的直徑,點是弦(包含端點,)上的動點,點在弧上.若是等邊三角形,且滿足,則的最小值為___________.16.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若對任意x0,f(x)0恒成立,求實數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個不同的零點x1,x2(x1x2),證明:.18.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.19.(12分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實數(shù)a的取值范圍:(2)若,記的兩個極值點為,,記的最大值與最小值分別為M,m,求的值.20.(12分)已知函數(shù).(1)討論的零點個數(shù);(2)證明:當(dāng)時,.21.(12分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內(nèi),求的面積.22.(10分)已知非零實數(shù)滿足.(1)求證:;(2)是否存在實數(shù),使得恒成立?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

利用等比中項性質(zhì)可得等差數(shù)列的首項,進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時,取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時,取到最小值,最小值為.故選:D.本題考查等差數(shù)列通項公式、等比中項性質(zhì)、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當(dāng)或時同時取到最值.2.A【解析】

利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.本題考查向量平行定理,考查向量的坐標(biāo)運算,屬于基礎(chǔ)題.3.A【解析】

解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎(chǔ)題.4.B【解析】

先列舉出不超過的素數(shù),并列舉出所有的基本事件以及事件“在不超過的素數(shù)中,隨機(jī)選取個不同的素數(shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數(shù)有:、、、、、,在不超過的素數(shù)中,隨機(jī)選取個不同的素數(shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數(shù)中,隨機(jī)選取個不同的素數(shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎(chǔ)題.5.C【解析】

模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是5,故選:C.本題主要考查程序框圖,屬于基礎(chǔ)題.6.A【解析】

求出所求圓的半徑,可得出所求圓的標(biāo)準(zhǔn)方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎(chǔ)題.7.A【解析】

由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.再由球與圓柱體積公式求解.【詳解】由三視圖還原原幾何體如圖,該幾何體為組合體,上半部分為半球,下半部分為圓柱,半球的半徑為1,圓柱的底面半徑為1,高為1.則幾何體的體積為.故選:.本題主要考查由三視圖求面積、體積,關(guān)鍵是由三視圖還原原幾何體,意在考查學(xué)生對這些知識的理解掌握水平.8.A【解析】

先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時注意積分區(qū)間和被積函數(shù)的選取.9.A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.10.B【解析】

利用復(fù)數(shù)除法、加法運算,化簡求得,再求得【詳解】,故.故選:B本小題主要考查復(fù)數(shù)的除法運算、加法運算,考查復(fù)數(shù)的模,屬于基礎(chǔ)題.11.C【解析】

求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時,是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時可先確定函數(shù)定義域,在定義域內(nèi)求解.12.B【解析】

根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對稱,又,所以或,所以的值是7或3.故選:B.本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13.或【解析】

用表示出的面積,求得等量關(guān)系,聯(lián)立焦距的大小,以及,即可容易求得,則離心率得解.【詳解】聯(lián)立解得.所以的面積,所以.而由雙曲線的焦距為知,,所以.聯(lián)立解得或故雙曲線的離心率為或.故答案為:或.本題考查雙曲線的方程與性質(zhì),考查運算求解能力以及函數(shù)與方程思想,屬中檔題.14.【解析】

由可知R為中點,設(shè),由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設(shè),則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.本題考查直線和圓的位置關(guān)系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學(xué)生的數(shù)形結(jié)合能力和計算能力,難度較難.15.1【解析】

建系,設(shè),表示出點坐標(biāo),則,根據(jù)的范圍得出答案.【詳解】解:以為原點建立平面坐標(biāo)系如圖所示:則,,,,設(shè),則,,,,,,,顯然當(dāng)取得最大值4時,取得最小值1.故答案為:1.本題考查了平面向量的數(shù)量積運算,坐標(biāo)運算,屬于中檔題.16.【解析】

根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當(dāng)時取等號,由可知,,當(dāng)時取等號,,當(dāng)有解時,令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析.【解析】

(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【詳解】(1)由,得.令.當(dāng)時,;當(dāng)時,;在上單調(diào)遞增,在上單調(diào)遞減,.對任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.本題考查利用導(dǎo)數(shù)解決不等式恒成立問題,利用導(dǎo)數(shù)證明不等式,屬于難題.18.(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】

運用數(shù)學(xué)歸納法證明即可得到結(jié)果化簡,運用累加法得出結(jié)果運用放縮法和累加法進(jìn)行求證【詳解】(Ⅰ)數(shù)學(xué)歸納法證明時,①當(dāng)時,成立;②當(dāng)時,假設(shè)成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故本題考查了數(shù)列的綜合,運用數(shù)學(xué)歸納法證明不等式的成立,結(jié)合已知條件進(jìn)行化簡求出化簡后的結(jié)果,利用放縮法求出不等式,然后兩邊同時取對數(shù)再進(jìn)行證明,本題較為困難。19.(1);(2)【解析】

(1)求導(dǎo).根據(jù)單調(diào),轉(zhuǎn)化為對恒成立求解(2)由(1)知,是的兩個根,不妨設(shè),令.根據(jù),確定,將轉(zhuǎn)化為.令,用導(dǎo)數(shù)法研究其單調(diào)性求最值.【詳解】(1)的定義域為,.因為單調(diào),所以對恒成立,所以,恒成立,因為,當(dāng)且僅當(dāng)時取等號,所以;(2)由(1)知,是的兩個根.從而,,不妨設(shè),則.因為,所以t為關(guān)于a的減函數(shù),所以..令,則.因為當(dāng)時,在上為減函數(shù).所以當(dāng)時,.從而,所以在上為減函數(shù).所以當(dāng)時,.本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.20.(1)見解析(2)見解析【解析】

(1)求出,分別以當(dāng),,時,結(jié)合函數(shù)的單調(diào)性和最值判斷零點的個數(shù).(2)令,結(jié)合導(dǎo)數(shù)求出;同理可求出滿足,從而可得,進(jìn)而證明.【詳解】解析:(1),,當(dāng)時,,單調(diào)遞減,,,此時有1個零點;當(dāng)時,無零點;當(dāng)時,由得,由得,∴在單調(diào)遞減,在單調(diào)遞增,∴在處取得最小值,若,則,此時沒有零點;若,則,此時有1個零點;若,則,,求導(dǎo)易得,此時在,上各有1個零點.綜上可得時,沒有零點,或時,有1個零點,時,有2個零點.(2)令,則,當(dāng)時,;當(dāng)時,,∴.令,則,當(dāng)時,,當(dāng)時,,∴,∴,,∴,即.本題考查了導(dǎo)數(shù)判斷函數(shù)零點問題,考查了運用導(dǎo)數(shù)證明不等式問題,考查了分類的數(shù)學(xué)思想.本題的難點在于第二問不等式的證明中,合理設(shè)出函數(shù),通過比較最值證明.21.(1)(2)【解析】

(1)因為,可得,即可求得答案;(2)分別設(shè)、的斜率為和,切點,,可得過點的拋物線的切線方程為:,聯(lián)立直線方程和拋物線方程,得到關(guān)于一元二次方程,根據(jù),求得,,進(jìn)而求得切點,坐標(biāo),根據(jù)兩點間距離公式求得,根據(jù)點到直線距離公式求得點到切線的距離,進(jìn)而求得的面積.【詳解】(1),,解得,拋物線的方程為.(2)由題意可知,、的斜率都存在,分別設(shè)為和,切點,,過點的拋物線的切線:,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論