版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是虛數(shù)單位,則()A.1 B.2 C. D.2.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種3.若為純虛數(shù),則z=()A. B.6i C. D.204.若函數(shù)有且只有4個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.5.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]6.設(shè),,,則()A. B. C. D.7.曲線在點處的切線方程為,則()A. B. C.4 D.88.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離9.已知函數(shù),則方程的實數(shù)根的個數(shù)是()A. B. C. D.10.已知定點,,是圓上的任意一點,點關(guān)于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓11.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.12.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.如果橢圓的對稱軸為坐標(biāo)軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且=,那么橢圓的方程是.14.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標(biāo)原點,則面積的取值范圍是____________.15.若實數(shù),滿足不等式組,則的最小值為______.16.設(shè)數(shù)列的前n項和為,且,若,則______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角,,所對的邊分別是,,,,,.(Ⅰ)求的值;(Ⅱ)求的值.18.(12分)等差數(shù)列中,.(1)求的通項公式;(2)設(shè),記為數(shù)列前項的和,若,求.19.(12分)設(shè)函數(shù).(1)若,求函數(shù)的值域;(2)設(shè)為的三個內(nèi)角,若,求的值;20.(12分)已知函數(shù).(1)若曲線在處的切線為,試求實數(shù),的值;(2)當(dāng)時,若有兩個極值點,,且,,若不等式恒成立,試求實數(shù)m的取值范圍.21.(12分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設(shè)平面與交于點,求證:為的中點.22.(10分)已知矩陣的逆矩陣.若曲線:在矩陣A對應(yīng)的變換作用下得到另一曲線,求曲線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由復(fù)數(shù)除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.2.C【解析】
根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,分2步進(jìn)行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.3.C【解析】
根據(jù)復(fù)數(shù)的乘法運算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.【點睛】本題考查復(fù)數(shù)的概念與運算,屬基礎(chǔ)題.4.B【解析】
由是偶函數(shù),則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數(shù)所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數(shù)性質(zhì)的應(yīng)用以及根據(jù)零點個數(shù)確定參數(shù)的取值范圍,基礎(chǔ)題.5.B【解析】
先求出,得到,再結(jié)合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.6.A【解析】
先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.7.B【解析】
求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.8.B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r9.D【解析】
畫出函數(shù),將方程看作交點個數(shù),運用圖象判斷根的個數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個,2個解,故方程的實數(shù)根的個數(shù)是3+2=5個故選:D【點睛】本題綜合考查了函數(shù)的圖象的運用,分類思想的運用,數(shù)學(xué)結(jié)合的思想判斷方程的根,難度較大,屬于中檔題.10.B【解析】
根據(jù)線段垂直平分線的性質(zhì),結(jié)合三角形中位線定理、圓錐曲線和圓的定義進(jìn)行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當(dāng)在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考查了雙曲線的定義,考查了數(shù)學(xué)運算能力和推理論證能力,考查了分類討論思想.11.A【解析】
根據(jù)題意,畫出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結(jié)合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對空間想象能力要求較高,屬于中檔題.12.A【解析】
根據(jù)定義,表示出數(shù)列的通項并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項為2,設(shè)第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當(dāng)?shù)闹悼梢詾?;即?個這種超級斐波那契數(shù)列,故選:A.【點睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意可設(shè)橢圓方程為:∵短軸的一個端點與兩焦點組成一正三角形,焦點在軸上∴又,∴,∴橢圓的方程為,故答案為.考點:橢圓的標(biāo)準(zhǔn)方程,解三角形以及解方程組的相關(guān)知識.14.【解析】
由題意,,則,得.由題意可設(shè)的方程為,,聯(lián)立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當(dāng)且僅當(dāng)即時取等號.故面積的取值范圍是.15.5【解析】
根據(jù)題意,畫出圖像,數(shù)形結(jié)合,將目標(biāo)轉(zhuǎn)化為求動直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當(dāng),時,取得最小值,且.【點睛】本題考查線性規(guī)劃問題,屬于基礎(chǔ)題16.9【解析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關(guān)系求數(shù)列通項的問題,要注意n的范圍,考查學(xué)生運算求解能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)正弦定理先求得邊c,然后由余弦定理可求得邊b;(Ⅱ)結(jié)合二倍角公式及和差公式,即可求得本題答案.【詳解】(Ⅰ)因為,由正弦定理可得,,又,所以,所以根據(jù)余弦定理得,,解得,;(Ⅱ)因為,所以,,,則.【點睛】本題主要考查利用正余弦定理解三角形,以及利用二倍角公式及和差公式求值,屬基礎(chǔ)題.18.(1)(2)【解析】
(1)由基本量法求出公差后可得通項公式;(2)由等差數(shù)列前項和公式求得,可求得.【詳解】解:(1)設(shè)的公差為,由題設(shè)得因為,所以解得,故.(2)由(1)得.所以數(shù)列是以2為首項,2為公比的等比數(shù)列,所以,由得,解得.【點睛】本題考查求等差數(shù)列的通項公式和等比數(shù)列的前項和公式,解題方法是基本量法.19.(1)(2)【解析】
(1)將,利用三角恒等變換轉(zhuǎn)化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由,得,又為的內(nèi)角,所以,又因為在中,,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數(shù)的性質(zhì),還考查了運算求解的能力,屬于中檔題,20.(1);(2).【解析】
(1)根據(jù)題意,求得的值,根據(jù)切點在切線上以及斜率等于,構(gòu)造方程組求得的值;(2)函數(shù)有兩個極值點,等價于方程的兩個正根,,不等式恒成立,等價于恒成立,,令,求出導(dǎo)數(shù),判斷單調(diào)性,即可得到的范圍,即的范圍.【詳解】(1)由題可知,,,聯(lián)立可得.(2)當(dāng)時,,,有兩個極值點,,且,,是方程的兩個正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是減函數(shù),,故.【點睛】該題考查的是有關(guān)導(dǎo)數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,函數(shù)的極值點的個數(shù),構(gòu)造新函數(shù),應(yīng)用導(dǎo)數(shù)研究函數(shù)的值域得到參數(shù)的取值范圍,屬于較難題目.21.(1)證明見解析;(2)證明見解析.【解析】
(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質(zhì)定理即可得到∥,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以.(2)因為平面與交于點,所以平面.因為分別為的中點,所以∥.又因為平面,平面,所以∥平面.又因為平面,平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專利技術(shù)轉(zhuǎn)讓私人居間合同
- 美容院軟裝合同模板
- 2024年度海南省公共營養(yǎng)師之二級營養(yǎng)師典型題匯編及答案
- 醫(yī)療健康領(lǐng)域患者服務(wù)設(shè)計措施
- 隧道施工安全與健康管理措施
- 2025工程借款合同范例
- 2025信托投資公司工程項目借款合同
- 2025 聘書、入職表可視為勞動合同嗎
- 2025來件加工裝配合同
- 2025土方回填工程合同
- 勞動合同續(xù)簽意見單
- 大學(xué)生國家安全教育意義
- 2024年保育員(初級)培訓(xùn)計劃和教學(xué)大綱-(目錄版)
- 河北省石家莊市2023-2024學(xué)年高二上學(xué)期期末考試 語文 Word版含答案
- 企業(yè)正確認(rèn)識和運用矩陣式管理
- 分布式光伏高處作業(yè)專項施工方案
- 陳閱增普通生物學(xué)全部課件
- 檢驗科主任就職演講稿范文
- 人防工程主體監(jiān)理質(zhì)量評估報告
- 20225GRedCap通信技術(shù)白皮書
- 燃?xì)庥邢薰究蛻舴?wù)規(guī)范制度
評論
0/150
提交評論