




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年山東省沂水一中協(xié)作體高三下學期模擬考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.322.對于任意,函數(shù)滿足,且當時,函數(shù).若,則大小關系是()A. B. C. D.3.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.4.設為的兩個零點,且的最小值為1,則()A. B. C. D.5.設變量滿足約束條件,則目標函數(shù)的最大值是()A.7 B.5 C.3 D.26.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.7.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.8.設函數(shù)滿足,則的圖像可能是A. B.C. D.9.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.1710.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值11.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.12.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則的值為____14.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.15.已知關于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.16.已知(為虛數(shù)單位),則復數(shù)________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.18.(12分)已知函數(shù).(1)若是的極值點,求的極大值;(2)求實數(shù)的范圍,使得恒成立.19.(12分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(?。┣蟮姆植剂?;(ⅱ)若,求的數(shù)學期望的最大值.20.(12分)某芯片公司對今年新開發(fā)的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統(tǒng)計數(shù)據(jù)分為五個小組(所調查的芯片得分均在內),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數(shù)的平均數(shù)(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續(xù)測試,現(xiàn)手機公司測試部門預算的測試經(jīng)費為10萬元,試問預算經(jīng)費是否足夠測試完這100顆芯片?請說明理由.21.(12分)《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、、、.選考科目成績計入考生總成績時,將至等級內的考生原始成績,依照等比例轉換法則,分別轉換到、、、、、、、八個分數(shù)區(qū)間,得到考生的等級成績.某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布.(1)求物理原始成績在區(qū)間的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學期望.(附:若隨機變量,則,,)22.(10分)設數(shù)列是等差數(shù)列,其前項和為,且,.(1)求數(shù)列的通項公式;(2)證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解。【詳解】由題意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B。本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應公式求解。2.A【解析】
由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數(shù)滿足,因為函數(shù)關于點對稱,當時,是單調增函數(shù),所以在定義域上是單調增函數(shù).因為,所以,.故選:A.本題考查利用函數(shù)性質比較函數(shù)值的大小,解題的關鍵要掌握函數(shù)對稱性的代數(shù)形式,屬于中檔題..3.A【解析】
設直線為,用表示出,,求出,令,利用導數(shù)求出單調區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設直線為,則,,而滿足,那么設,則,函數(shù)在上單調遞減,在上單調遞增,所以故選:.本題考查導數(shù)知識的運用:求單調區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導確定函數(shù)的最小值是關鍵,屬于中檔題.4.A【解析】
先化簡已知得,再根據(jù)題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點,且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.本題考查了三角恒等變換和三角函數(shù)的圖象與性質的應用問題,是基礎題.5.B【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.6.D【解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關于f1.5≤2故選:D.本題考查了函數(shù)圖像的識別,確定函數(shù)關于1,0中心對稱是解題的關鍵.7.C【解析】
根據(jù)等比數(shù)列的下標和性質可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質即可求出.【詳解】∵,∴,又,可解得或設等比數(shù)列的公比為,則當時,,∴;當時,,∴.故選:C.本題主要考查等比數(shù)列的性質應用,意在考查學生的數(shù)學運算能力,屬于基礎題.8.B【解析】根據(jù)題意,確定函數(shù)的性質,再判斷哪一個圖像具有這些性質.由得是偶函數(shù),所以函數(shù)的圖象關于軸對稱,可知B,D符合;由得是周期為2的周期函數(shù),選項D的圖像的最小正周期是4,不符合,選項B的圖像的最小正周期是2,符合,故選B.9.C【解析】
首先根據(jù)對數(shù)函數(shù)的性質求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數(shù)可以為8.故選:C本題考查對數(shù)函數(shù)的性質的應用,屬于基礎題.10.B【解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質得出,結合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.11.A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.12.C【解析】
由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.本題考查等差數(shù)列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】
根據(jù)的正負值,代入對應的函數(shù)解析式求解即可.【詳解】解:.故答案為:.本題考查分段函數(shù)函數(shù)值的求解,是基礎題.14.【解析】
先確定球心的位置,結合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設,.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.15.③④【解析】
由直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.本題考查直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關系,掌握空間線線、線面、面面位置關系是解題基礎.16.【解析】
解:故答案為:本題考查復數(shù)代數(shù)形式的乘除運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)【解析】
(1)連接交于點,連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標系,分別表示出對應的點坐標,設平面的一個法向量為,結合直線對應的和法向量,利用向量夾角的余弦公式進行求解即可【詳解】證明:如圖,連接交于點,連接,點為的中點,點為的中點,點為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標系,則,,,,,,.設平面的一個法向量為,由,取,得.設直線與平面所成角為,則.直線與平面所成角的正弦值為.本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識記18.(1).(2)【解析】
(1)先對函數(shù)求導,結合極值存在的條件可求t,然后結合導數(shù)可研究函數(shù)的單調性,進而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,構造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結合導數(shù)及函數(shù)的性質可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當x>2,0<x<1時,f′(x)>0,函數(shù)單調遞增,當1<x<2時,f′(x)<0,函數(shù)單調遞減,故當x=1時,函數(shù)取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當t≥0時,g(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)當﹣2<t<0時,g(x)在()上單調遞減,在(0,),(1,+∞)上單調遞增,此時g(1)=t﹣1<﹣1不合題意,舍去;(iii)當t=﹣2時,g′(x)0,即g(x)在(0,+∞)上單調遞增,此時g(1)=﹣3不合題意;(iv)當t<﹣2時,g(x)在(1,)上單調遞減,在(0,1),()上單調遞增,此時g(1)=t﹣1<﹣3不合題意,綜上,t≥1時,f(x)≥2恒成立.本題主要考查了利用導數(shù)求解函數(shù)的單調性及極值,利用導數(shù)與函數(shù)的性質處理不等式的恒成立問題,分類討論思想,屬于中檔題.19.(Ⅰ)0.288(Ⅱ)(?。┮娊馕觯áⅲ?shù)學期望的最大值為280【解析】
(Ⅰ)根據(jù)題意,設購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨立重復事件的特點得出,利用二項分布的概率公式,即可求出結果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學期望,結合,即可算出的最大值.【詳解】解:(Ⅰ)設購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當時,的最大值為280,所以的數(shù)學期望的最大值為280.本題考查獨立重復事件和二項分布的應用,以及離散型分布列和數(shù)學期望,考查計算能力.20.(1)(2)預算經(jīng)費不夠測試完這100顆芯片,理由見解析【解析】
(1)先求出,再利用頻率分布直方圖的平均數(shù)公式求這100顆芯片評測分數(shù)的平均數(shù);(2)先求出每顆芯片的測試費用的數(shù)學期望,再比較得解.【詳解】(1)依題意,,故.又因為.所以,所求平均數(shù)為(萬分)(2)由題意可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 帆布制品售后服務管理考核試卷
- 玻璃加工技術解析考核試卷
- 水產(chǎn)品市場調研方法考核試卷
- 半導體器件的壓力傳感器考核試卷
- IDS金融服務公司(案例)
- 《依法行使權利》課件
- DB11 T 384.8-2009 圖像信息管理系統(tǒng)技術規(guī)范 第8部分 危險場所的施工與驗收
- (31)-3【北師】數(shù)學選拔卷01
- 幼兒園班級心得體會
- 債權轉讓協(xié)議合同書
- 精益醫(yī)療管理
- 心力衰竭的飲食護理
- 冷庫及制冷設備采購項目方案投標文件(技術方案)
- 農(nóng)業(yè)昆蟲學-形考測試二-國開(ZJ)-參考資料
- 2024-2030年中國分布式光伏電站行業(yè)發(fā)展規(guī)模及項目投資可行性分析報告
- 2024年高考真題-地理(河北卷) 含答案
- 2025年全年考勤表
- 2024年湖北省高考數(shù)學第二次聯(lián)考試卷附答案解析
- 4.1.2-指數(shù)函數(shù)的性質與圖象教學設計
- 工程倫理(2024東莞理工)學習通超星期末考試答案章節(jié)答案2024年
- 醫(yī)學教材 《瘧疾》課件
評論
0/150
提交評論