2021-2022學年吉林省延邊二中高三下學期聯(lián)合考試數(shù)學試題含解析_第1頁
2021-2022學年吉林省延邊二中高三下學期聯(lián)合考試數(shù)學試題含解析_第2頁
2021-2022學年吉林省延邊二中高三下學期聯(lián)合考試數(shù)學試題含解析_第3頁
2021-2022學年吉林省延邊二中高三下學期聯(lián)合考試數(shù)學試題含解析_第4頁
2021-2022學年吉林省延邊二中高三下學期聯(lián)合考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.2.已知函數(shù),關于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)3.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.4.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則5.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.6.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.7.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.408.已知定點,,是圓上的任意一點,點關于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓9.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.10.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.311.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.12.已知集合,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.14.根據(jù)如圖所示的偽代碼,若輸入的的值為2,則輸出的的值為____________.15.已知實數(shù)滿足,則的最小值是______________.16.已知,,則與的夾角為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實數(shù)的取值范圍.18.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當時,,求的取值范圍.19.(12分)已知函數(shù)(I)若討論的單調性;(Ⅱ)若,且對于函數(shù)的圖象上兩點,存在,使得函數(shù)的圖象在處的切線.求證:.20.(12分)的內角,,的對邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.21.(12分)已知離心率為的橢圓經過點.(1)求橢圓的方程;(2)薦橢圓的右焦點為,過點的直線與橢圓分別交于,若直線、、的斜率成等差數(shù)列,請問的面積是否為定值?若是,求出此定值;若不是,請說明理由.22.(10分)已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函數(shù)h(x)的單調區(qū)間;(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個極值點x1,x2,且滿足1e(e為自然對數(shù)的底數(shù))求x1?x2的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由題中垂直關系,可得漸近線的方程,結合,構造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數(shù)學運算的能力,屬于中檔題.2.D【解析】

原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數(shù)零點問題,關鍵在于等價轉化,將問題轉化為通過導函數(shù)討論函數(shù)單調性解決問題.3.C【解析】

根據(jù)等差數(shù)列的性質設出,,,利用勾股定理列方程,結合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,,成等差數(shù)列,設,,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質,屬于中檔題.4.B【解析】

根據(jù)空間中線線、線面位置關系,逐項判斷即可得出結果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【點睛】本題主要考查與線面、線線相關的命題,熟記線線、線面位置關系,即可求解,屬于??碱}型.5.D【解析】

直接利用復數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:【點睛】本題考查復數(shù)的模的運算法則的應用,復數(shù)的模的求法,考查計算能力.6.C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.7.A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學生的計算能力.8.B【解析】

根據(jù)線段垂直平分線的性質,結合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考查了雙曲線的定義,考查了數(shù)學運算能力和推理論證能力,考查了分類討論思想.9.C【解析】

利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據(jù)兩對立事件的概率和為1求解即可.【詳解】設“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎題.10.A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.11.C【解析】

根據(jù)題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎題.12.C【解析】

由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數(shù)軸求解.注意端點處是實心圓還是空心圓.二、填空題:本題共4小題,每小題5分,共20分。13.0.18【解析】

根據(jù)表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨立事件的概率應用,互斥事件的概率求法,屬于基礎題.14.【解析】

滿足條件執(zhí)行,否則執(zhí)行.【詳解】本題實質是求分段函數(shù)在處的函數(shù)值,當時,.故答案為:1【點睛】本題考查條件語句的應用,此類題要做到讀懂算法語句,本題是一道容易題.15.【解析】

先畫出不等式組對應的可行域,再利用數(shù)形結合分析解答得解.【詳解】畫出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當直線經過點時,直線的縱截距最小,目標函數(shù)取得最小值,且.故答案為:-8【點睛】本題主要考查線性規(guī)劃問題,意在考查學生對這些知識的理解掌握水平和數(shù)形結合分析能力.16.【解析】

根據(jù)已知條件,去括號得:,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)2;(2).【解析】

(1)化簡得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉化為,討論去絕對值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當且僅當且即時,.(2)由(1)知,,對任意,都有,∴,即.①當時,有,解得;②當,時,有,解得;③當時,有,解得;綜上,,∴實數(shù)的取值范圍是.【點睛】本題主要考查基本不等式的運用和求解含絕對值的不等式,考查學生的分類思想和計算能力,屬于中檔題.18.(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當時,恒成立,②當時,轉化為,設,求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因為不等式的解集為,所以,故不等式可化為,解得,所以,解得.(2)①當時,恒成立,所以.②當時,可化為,設,則,所以當時,,所以.綜上,的取值范圍是.19.(1)見解析(2)見證明【解析】

(1)對函數(shù)求導,分別討論,以及,即可得出結果;(2)根據(jù)題意,由導數(shù)幾何意義得到,將證明轉化為證明即可,再令,設,用導數(shù)方法判斷出的單調性,進而可得出結論成立.【詳解】(1)解:易得,函數(shù)的定義域為,,令,得或.①當時,時,,函數(shù)單調遞減;時,,函數(shù)單調遞增.此時,的減區(qū)間為,增區(qū)間為.②當時,時,,函數(shù)單調遞減;或時,,函數(shù)單調遞增.此時,的減區(qū)間為,增區(qū)間為,.③當時,時,,函數(shù)單調遞增;此時,的減區(qū)間為.綜上,當時,的減區(qū)間為,增區(qū)間為:當時,的減區(qū)間為,增區(qū)間為.;當時,增區(qū)間為.(2)證明:由題意及導數(shù)的幾何意義,得由(1)中得.易知,導函數(shù)在上為增函數(shù),所以,要證,只要證,即,即證.因為,不妨令,則.所以,所以在上為增函數(shù),所以,即,所以,即,即.故有(得證).【點睛】本題主要考查導數(shù)的應用,通常需要對函數(shù)求導,利用導數(shù)的方法研究函數(shù)的單調性以及函數(shù)極值等即可,屬于??碱}型.20.(1);(2)【解析】

(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進而求得的值;(2)根據(jù)正弦定理將邊化為角,結合(1)中的值,即可將表達式化為的三角函數(shù)式;結合正弦和角公式與輔助角公式化簡,即可求得和,進而由正弦定理確定,代入整式即可求解.【詳解】(1)因為,所以由三角形面積公式及平面向量數(shù)量積運算可得,所以.因為,所以.(2)因為,所以由正弦定理代入化簡可得,由(1),代入可得,展開化簡可得,根據(jù)輔助角公式化簡可得.因為,所以,所以,所以為等腰三角形,且,所以.【點睛】本題考查了正弦定理在解三角形中的應用,三角形面積公式的應用,平面向量數(shù)量積的運算,正弦和角公式及輔助角公式的簡單應用,屬于基礎題.21.(1);(2)是,【解析】

(1)根據(jù)及可得,再將點代入橢圓的方程與聯(lián)立解出,即可求出橢圓的方程;(2)可設所在直線的方程為,,,,將直線的方程與橢圓的方程聯(lián)立,用根與系數(shù)的關系求出,然后將直線、、的斜率、、分別用表示,利用可求出,從而可確定點恒在一條直線上,結合圖形即可求出的面積.【詳解】(1)因為橢圓的離心率為,所以,即,又,所以,①因為點在橢圓上,所以,②由①②解得,所以橢圓C的方程為.(1)可知,,可設所在直線的方程為,由,得,設,,,則,,設直線、、的斜率分別為、、,因為三點共線,所以,即,所以,又,因為直線、、的斜率成等差數(shù)列,所以,即,化簡得,即點恒在一條直線上,又因為直線方程為,且,所以是定值.【點睛】本題主要考查橢圓的方程,直線與橢圓的位置關系及橢圓中的定值問題,屬于中檔題.22.(1)單調遞增區(qū)間是(0,e),單調遞減區(qū)間是(e,+∞)(2)【解析】

(1)化簡函數(shù)h(x),求導,根據(jù)導數(shù)和函數(shù)的單調性的關系即可求出(2)函數(shù)f(x)恰有兩個極值點x1,x2,則f′(x)=lnx﹣mx=0有兩個正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消參數(shù)m化簡整理可得ln(x1x2)=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論