




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知全集,集合,則()A. B. C. D.2.已知集合,集合,則A. B.或C. D.3.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線對稱;②圖象C關(guān)于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③4.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.5.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.6.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.7.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.78.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.79.設(shè),,,則()A. B. C. D.10.已知向量,若,則實數(shù)的值為()A. B. C. D.11.已知函數(shù)()的最小值為0,則()A. B. C. D.12.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P2二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,所有項的系數(shù)之和為1024,則展開式常數(shù)項的值等于_______.14.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實驗表明,該藥物釋放量與時間的函數(shù)關(guān)系為(如圖所示),實驗表明,當(dāng)藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經(jīng)過______分鐘人方可進入房間.15.已知,滿足約束條件,則的最小值為______.16.設(shè)滿足約束條件,則目標函數(shù)的最小值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求在點處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個實數(shù)根,且,證明:.18.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數(shù)列中,,且,若數(shù)列的前n項和為,求證:.19.(12分)2019年入冬時節(jié),長春市民為了迎接2022年北京冬奧會,增強身體素質(zhì),積極開展冰上體育鍛煉.現(xiàn)從速滑項目中隨機選出100名參與者,并由專業(yè)的評估機構(gòu)對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統(tǒng)計,請將下列列聯(lián)表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關(guān)系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)20.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設(shè)二面角的大小為,求的值.21.(12分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應(yīng)的問題.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.22.(10分)為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標準差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).(1)求樣本平均數(shù)的大??;(2)若一個零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.2.C【解析】
由可得,解得或,所以或,又,所以,故選C.3.B【解析】
根據(jù)三角函數(shù)的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結(jié)論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數(shù)的對稱軸、對稱中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.4.D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.5.C【解析】
對選項逐個驗證即得答案.【詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當(dāng)時,;當(dāng)時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.【點睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.6.C【解析】
由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.7.B【解析】
先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎(chǔ)題8.D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點滿足,可得則==【點睛】本題考查了向量的數(shù)量積運算,關(guān)鍵是利用基向量表示所求向量.9.A【解析】
先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.10.D【解析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實數(shù)的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點睛】本題考查了向量的數(shù)量積,考查了向量的坐標運算.對于向量問題,若已知垂直,通常可得到兩個向量的數(shù)量積為0,繼而結(jié)合條件進行化簡、整理.11.C【解析】
設(shè),計算可得,再結(jié)合圖像即可求出答案.【詳解】設(shè),則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結(jié)合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.12.C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數(shù),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用展開式所有項系數(shù)的和得n=5,再利用二項式展開式的通項公式,求得展開式中的常數(shù)項.【詳解】因為的二項展開式中,所有項的系數(shù)之和為4n=1024,n=5,故的展開式的通項公式為Tr+1=C·35-r,令,解得r=4,可得常數(shù)項為T5=C·3=15,故填15.【點睛】本題主要考查了二項式定理的應(yīng)用、二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于中檔題.14.240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當(dāng)時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經(jīng)過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數(shù)的應(yīng)用,屬于中檔題.15.2【解析】
作出可行域,平移基準直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準直線到處時,取得最小值為.故答案為:【點睛】本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.16.【解析】
根據(jù)滿足約束條件,畫出可行域,將目標函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數(shù)取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ);(Ⅲ)證明見解析【解析】
(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(Ⅱ)求導(dǎo)分析函數(shù)的單調(diào)性,并構(gòu)造函數(shù)根據(jù)單調(diào)性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結(jié)論可知,在上恒成立,再分別設(shè)的解為、.再根據(jù)不等式的性質(zhì)證明即可.【詳解】(Ⅰ)由題,故.且.故在點處的切線方程為.(Ⅱ)設(shè)恒成立,故.設(shè)函數(shù)則,故在上單調(diào)遞減且,又在上單調(diào)遞增.又,即且,故只能在處取得最小值,當(dāng)時,此時,且在上,單調(diào)遞減.在上,單調(diào)遞增.故,滿足題意;當(dāng)時,此時有解,且在上單調(diào)遞減,與矛盾;當(dāng)時,此時有解,且在上單調(diào)遞減,與矛盾;故(Ⅲ).由(Ⅰ),在上單調(diào)遞減且,又在上單調(diào)遞增,故最多一根.又因為,,故設(shè)的解為,因為,故.所以在遞減,在遞增.因為方程有兩個實數(shù)根,故.結(jié)合(Ⅰ)(Ⅱ)有,在上恒成立.設(shè)的解為,則;設(shè)的解為,則.故,.故,得證.【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及根據(jù)函數(shù)的單調(diào)性與最值求解參數(shù)值的問題.同時也考查了構(gòu)造函數(shù)結(jié)合前問的結(jié)論證明不等式的方法.屬于難題.18.(Ⅰ)函數(shù)在上單調(diào)遞減,在單調(diào)遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】
(Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),通過解關(guān)于導(dǎo)數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)g(x)=f(x)﹣ax,先求出函數(shù)g(x)的導(dǎo)數(shù),通過討論a的范圍,得到函數(shù)的單調(diào)性,從而求出a的最小值;(Ⅲ)先求出數(shù)列是以為首項,1為公差的等差數(shù)列,,,問題轉(zhuǎn)化為證明:,通過換元法或數(shù)學(xué)歸納法進行證明即可.【詳解】解:(Ⅰ)f(x)的定義域為(﹣1,+∞),,當(dāng)時,f′(x)<2,當(dāng)時,f′(x)>2,所以函數(shù)f(x)在上單調(diào)遞減,在單調(diào)遞增.(Ⅱ)設(shè),則,因為x≥2,故,(?。┊?dāng)a≥1時,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調(diào)遞減,而g(2)=2,所以對所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當(dāng)1<a<1時,2<1﹣a<1,若,則g′(x)>2,g(x)單調(diào)遞增,而g(2)=2,所以當(dāng)時,g(x)>2,即f(x)>ax;(ⅲ)當(dāng)a≤1時,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調(diào)遞增,而g(2)=2,所以對所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=1得,an≠2,所以,數(shù)列是以為首項,1為公差的等差數(shù)列,故,,,?,由(Ⅱ)知a=1時,,x>2,即,x>2.法一:令,得,即因為,所以,故.法二:?下面用數(shù)學(xué)歸納法證明.(1)當(dāng)n=1時,令x=1代入,即得,不等式成立(1)假設(shè)n=k(k∈N*,k≥1)時,不等式成立,即,則n=k+1時,,令代入,得,即:,由(1)(1)可知不等式對任何n∈N*都成立.故.考點:1利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;1、利用導(dǎo)數(shù)研究函數(shù)的最值;3、數(shù)列的通項公式;4、數(shù)列的前項和;5、不等式的證明.19.(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關(guān)系【解析】
(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據(jù)表格數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關(guān)系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運動的人數(shù)為.完善列聯(lián)表如下:擅長不擅長合計男性203050女性104050合計3070100,對照表格可知,,不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關(guān)系.【點睛】本小題主要考查根據(jù)頻率分布直方圖計算小長方形的高,考查列聯(lián)表獨立性檢驗,屬于基礎(chǔ)題.20.(1)證明見解析;(2).【解析】
(1)要證明平面平面,只需證明平面即可;(2)取的中點D,連接BD,以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,分別計算平面的法向量為與平面的法向量為,利用夾角公式計算即可.【詳解】(1)在中,,所以,即.因為,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點D,連接BD,則.以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,則,,,,.設(shè)平面的法向量為,且,.由得取.由四邊形為菱形,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度租船運輸費用及船舶交易中介服務(wù)協(xié)議
- 2025年度知識產(chǎn)權(quán)授權(quán)保證金協(xié)議
- 2025年度私家車個人車輛抵押融資合同
- 二零二五年度勞務(wù)班組退場及新能源項目設(shè)備回收協(xié)議
- 二零二五年度機床轉(zhuǎn)讓與知識產(chǎn)權(quán)保護協(xié)議
- 2025年度生物科技企業(yè)研發(fā)人員勞動用工協(xié)議書
- 二零二五年度手房貸款買賣合同(含裝修款分期支付)
- 二零二五年度古井買賣合同范本全新解讀
- 二零二五年度科室承包責(zé)任書及考核協(xié)議
- 幼兒園與社區(qū)聯(lián)合舉辦親子活動的合作協(xié)議
- 吊罐法掘天井安全技術(shù)操作規(guī)程(4篇)
- 科學(xué)計算語言Julia及MWORKS實踐 課件 4-Syslab簡介
- 2024年高考語文復(fù)習(xí):酬和類古代詩歌閱讀 專項練習(xí)題匯編(含答案解析)
- GB/T 36547-2024電化學(xué)儲能電站接入電網(wǎng)技術(shù)規(guī)定
- 醫(yī)療廢物管理條例
- 消防工程常用設(shè)施三維圖解
- 慢性乙型肝炎防治指南(2022年版)解讀
- 搟筋課件教學(xué)課件
- 醫(yī)院工程改造工程施工組織設(shè)計方案
- 英語人稱代詞和物主代詞練習(xí)題(附答案)
- 計算機一級考試WPS試題及答案
評論
0/150
提交評論