2023屆浙江寧波市余姚中學高三數學第一學期期末質量跟蹤監(jiān)視試題含解析_第1頁
2023屆浙江寧波市余姚中學高三數學第一學期期末質量跟蹤監(jiān)視試題含解析_第2頁
2023屆浙江寧波市余姚中學高三數學第一學期期末質量跟蹤監(jiān)視試題含解析_第3頁
2023屆浙江寧波市余姚中學高三數學第一學期期末質量跟蹤監(jiān)視試題含解析_第4頁
2023屆浙江寧波市余姚中學高三數學第一學期期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.2.在復平面內,復數(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉的角為,則,法國數學家棣莫弗發(fā)現了棣莫弗定理:,,則,由棣莫弗定理可以導出復數乘方公式:,已知,則()A. B.4 C. D.163.在平面直角坐標系中,已知角的頂點與原點重合,始邊與軸的非負半軸重合,終邊落在直線上,則()A. B. C. D.4.的展開式中的一次項系數為()A. B. C. D.5.已知函數,則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱6.已知函數,若關于的不等式恰有1個整數解,則實數的最大值為()A.2 B.3 C.5 D.87.已知復數(為虛數單位)在復平面內對應的點的坐標是()A. B. C. D.8.設雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.9.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.310.已知等差數列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.11.在復平面內,復數z=i對應的點為Z,將向量繞原點O按逆時針方向旋轉,所得向量對應的復數是()A. B. C. D.12.已知某口袋中有3個白球和個黑球(),現從中隨機取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數是.若,則=()A. B.1 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓Г:,F1、F2是橢圓Г的左、右焦點,A為橢圓Г的上頂點,延長AF2交橢圓Г于點B,若為等腰三角形,則橢圓Г的離心率為___________.14.某高校組織學生辯論賽,六位評委為選手成績打出分數的莖葉圖如圖所示,若去掉一個最高分,去掉一個最低分,則所剩數據的平均數與中位數的差為______.15.在數列中,已知,則數列的的前項和為__________.16.已知雙曲線的一條漸近線經過點,則該雙曲線的離心率為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.18.(12分)已知曲線,直線:(為參數).(I)寫出曲線的參數方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.19.(12分)已知分別是的內角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.20.(12分)已知均為正實數,函數的最小值為.證明:(1);(2).21.(12分)已知函數,為實數,且.(Ⅰ)當時,求的單調區(qū)間和極值;(Ⅱ)求函數在區(qū)間,上的值域(其中為自然對數的底數).22.(10分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據在關于對稱的區(qū)間上概率相等的性質求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應用.掌握正態(tài)曲線的性質是解題基礎.隨機變量服從正態(tài)分布,則.2、D【解析】

根據復數乘方公式:,直接求解即可.【詳解】,.故選:D【點睛】本題考查了復數的新定義題目、同時考查了復數模的求法,解題的關鍵是理解棣莫弗定理,將復數化為棣莫弗定理形式,屬于基礎題.3、C【解析】

利用誘導公式以及二倍角公式,將化簡為關于的形式,結合終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.【點睛】本題考查三角函數中的誘導公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結果;(2)將變形為,利用的值求出結果.4、B【解析】

根據多項式乘法法則得出的一次項系數,然后由等差數列的前項和公式和組合數公式得出結論.【詳解】由題意展開式中的一次項系數為.故選:B.【點睛】本題考查二項式定理的應用,應用多項式乘法法則可得展開式中某項系數.同時本題考查了組合數公式.5、D【解析】

先將函數化為,再由三角函數的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數對稱軸可得:解得:,當,,故C正確;對于D,正弦函數對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數的性質,熟記三角函數基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.6、D【解析】

畫出函數的圖象,利用一元二次不等式解法可得解集,再利用數形結合即可得出.【詳解】解:函數,如圖所示當時,,由于關于的不等式恰有1個整數解因此其整數解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數解當時,,至少有兩個整數解綜上,實數的最大值為故選:D【點睛】本題主要考查了根據函數零點的個數求參數范圍,屬于較難題.7、A【解析】

直接利用復數代數形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內對應的點的坐標是.故選:A.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,屬于基礎題.8、A【解析】

依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于中檔題.9、A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.10、C【解析】

首先求出等差數列的首先和公差,然后寫出數列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數列為,故.故選:C.【點睛】本題主要考查了等差數列的基本量的求解,屬于基礎題.11、A【解析】

由復數z求得點Z的坐標,得到向量的坐標,逆時針旋轉,得到向量的坐標,則對應的復數可求.【詳解】解:∵復數z=i(i為虛數單位)在復平面中對應點Z(0,1),

∴=(0,1),將繞原點O逆時針旋轉得到,

設=(a,b),,則,即,

又,解得:,∴,對應復數為.故選:A.【點睛】本題考查復數的代數表示法及其幾何意義,是基礎題.12、B【解析】由題意或4,則,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意可得等腰三角形的兩條相等的邊,設,由題可得的長,在三角形中,三角形中由余弦定理可得的值相等,可得的關系,從而求出橢圓的離心率【詳解】如圖,若為等腰三角形,則|BF1|=|AB|.設|BF2|=t,則|BF1|=2a?t,所以|AB|=a+t=|BF1|=2a?t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,設∠BAO=θ,則∠BAF1=2θ,所以Г的離心率e=,結合余弦定理,易得在中,,所以,即e==,故答案為:.【點睛】此題考查橢圓的定義及余弦定理的簡單應用,屬于中檔題.14、【解析】

先根據莖葉圖求出平均數和中位數,然后可得結果.【詳解】剩下的四個數為83,85,87,95,且這四個數的平均數,這四個數的中位數為,則所剩數據的平均數與中位數的差為.【點睛】本題主要考查莖葉圖的識別和統(tǒng)計量的計算,側重考查數據分析和數學運算的核心素養(yǎng).15、【解析】

由已知數列遞推式可得數列的所有奇數項與偶數項分別構成以2為公比的等比數列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數列的所有奇數項與偶數項分別構成以2為公比的等比數列.,..故答案為:.【點睛】本題考查數列遞推式,考查等差數列與等比數列的通項公式,訓練了數列的分組求和,屬于中檔題.16、【解析】

根據雙曲線方程,可得漸近線方程,結合題意可表示,再由雙曲線a,b,c關系表示,最后結合雙曲線離心率公式計算得答案.【詳解】因為雙曲線為,所以該雙曲線的漸近線方程為.又因為其一條漸近線經過點,即,則,由此可得.故答案為:.【點睛】本題考查由雙曲線的漸近線構建方程表示系數關系進而求離心率,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)設中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內二相交直線,平面平面,平面DMN,平面;(2)設中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設,則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標系(如圖),則,,,.,,設平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學生計算能力和空間想象能力,是中檔題.18、(I);(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標準方程設,得橢圓的參數方程為,消去參數即得直線的普通方程為;(II)關鍵是處理好與角的關系.過點作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉化為橢圓上的點,到定直線的最大值與最小值問題處理.試題解析:(I)曲線C的參數方程為(為參數).直線的普通方程為.(II)曲線C上任意一點到的距離為.則.其中為銳角,且.當時,取到最大值,最大值為.當時,取到最小值,最小值為.【考點定位】1、橢圓和直線的參數方程;2、點到直線的距離公式;3、解直角三角形.19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)由已知結合正弦定理先進行代換,然后結合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結合三角形的面積公式可求;(Ⅲ)結合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因為,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因為,所以;(Ⅲ)由于,.所以.【點睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應用,意在考查學生對這些知識的理解掌握水平.20、(1)證明見解析(2)證明見解析【解析】

(1)運用絕對值不等式的性質,注意等號成立的條件,即可求得最小值,再運用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結論,注意等號成立的條件.【詳解】(1)由題意,則函數,又函數的最小值為,即,由柯西不等式得,當且僅當時取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當且僅當時同時取“=”)由(1)知,,所以,將以上三式相加得即.【點睛】本題主要考查絕對值不等式、柯西不等式等基礎知識,考查運算能力,屬于中檔題.21、(Ⅰ)極大值0,沒有極小值;函數的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】

(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數在區(qū)間上的值域,即可得到本題答案.【詳解】當時,,,當時,,函數單調遞增,當時,,函數單調遞減,故當時,函數取得極大值,沒有極小值;函數的增區(qū)間為,減區(qū)間為,,當時,,在上單調遞增,即函數的值域為;當時,,在上單調遞減,即函數的值域為;當時,易得時,,在上單調遞增,時,,在上單調遞減,故當時,函數取得最大值,最小值為,中最小的,當時,,最小值;當,,最小值;綜上,當時,函數的值域為,當時,函數的值域,當時,函數的值域為,當時,函數的值域為.【點睛】本題主要考查利用導數求單調區(qū)間和極值,以及利用導數研究含參函數在給定區(qū)間的值域,考查學生的運算求解能力,體現了分類討論的數學思想.22、(1)證明見詳解;(2).【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論