




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.2.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.3.已知函數(shù)(e為自然對數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為()A. B. C. D.4.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設(shè)送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.5.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.6.若直線與曲線相切,則()A.3 B. C.2 D.7.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.8.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.19.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結(jié)果中最接近真實值的是()A. B. C. D.10.若復(fù)數(shù)滿足,則對應(yīng)的點位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知函數(shù),且),則“在上是單調(diào)函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件12.正項等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.54二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),且由的最大值是_________14.已知向量=(-4,3),=(6,m),且,則m=__________.15.如圖是一個算法的偽代碼,運行后輸出的值為___________.16.若實數(shù)x,y滿足約束條件,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)為實數(shù))的圖像在點處的切線方程為.(1)求實數(shù)的值及函數(shù)的單調(diào)區(qū)間;(2)設(shè)函數(shù),證明時,.18.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎?wù)邤S各面標(biāo)有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結(jié)束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎?wù)邚南渲腥我饷鰝€球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.19.(12分)已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求和的普通方程;(2)過坐標(biāo)原點作直線交曲線于點(異于),交曲線于點,求的最小值.20.(12分)已知函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,,且,為的導(dǎo)函數(shù),設(shè),求的取值范圍,并求取到最小值時所對應(yīng)的的值.21.(12分)設(shè)實數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.22.(10分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當(dāng)時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.2、B【解析】
計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學(xué)生的計算能力和空間想象能力.3、A【解析】
若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,∴,設(shè),∴,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,∴,當(dāng)時,,當(dāng),,函數(shù)恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,∴且,即,且∴,故實數(shù)m的最大值為,故選:A【點睛】本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運算能力.4、D【解析】
這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點睛】考查幾何概型,是基礎(chǔ)題.5、B【解析】
先分別判斷命題真假,再由復(fù)合命題的真假性,即可得出結(jié)論.【詳解】為真命題;命題是假命題,比如當(dāng),或時,則不成立.則,,均為假.故選:B【點睛】本題考查復(fù)合命題的真假性,判斷簡單命題的真假是解題的關(guān)鍵,屬于基礎(chǔ)題.6、A【解析】
設(shè)切點為,對求導(dǎo),得到,從而得到切線的斜率,結(jié)合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.7、C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點處的函數(shù)值進行判斷求解.【詳解】∵,.當(dāng)時,,在上單調(diào)遞增,不合題意.當(dāng)時,,在上單調(diào)遞減,也不合題意.當(dāng)時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.8、C【解析】
利用復(fù)數(shù)的四則運算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的四則運算、虛部概念,考查運算求解能力,屬于基礎(chǔ)題.9、B【解析】
為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認(rèn)為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學(xué)生的分析問題的能力,屬于基礎(chǔ)題.10、D【解析】
利用復(fù)數(shù)模的計算、復(fù)數(shù)的除法化簡復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對應(yīng)的點,對應(yīng)的點位于復(fù)平面的第四象限.故選:D.【點睛】本題考查復(fù)數(shù)模的計算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運算求解能力,屬于基礎(chǔ)題.11、C【解析】
先求出復(fù)合函數(shù)在上是單調(diào)函數(shù)的充要條件,再看其和的包含關(guān)系,利用集合間包含關(guān)系與充要條件之間的關(guān)系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調(diào)遞減,單調(diào)遞增,在上是單調(diào)函數(shù),其充要條件為即.故選:C.【點睛】本題考查了復(fù)合函數(shù)的單調(diào)性的判斷問題,充要條件的判斷,屬于基礎(chǔ)題.12、C【解析】
由等差數(shù)列通項公式得,求出,再利用等差數(shù)列前項和公式能求出.【詳解】正項等差數(shù)列的前項和,,,解得或(舍),,故選C.【點睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項和的關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
將其轉(zhuǎn)化為幾何意義,然后根據(jù)最值的條件求出最大值【詳解】由化簡得,又實數(shù),圖形為圓,如圖:,可得,則由幾何意義得,則,為求最大值則當(dāng)過點或點時取最小值,可得所以的最大值是【點睛】本題考查了二元最值問題,將其轉(zhuǎn)化為幾何意義,得到圓的方程及斜率問題,對要求的二元二次表達式進行化簡,然后求出最值問題,本題有一定難度。14、8.【解析】
利用轉(zhuǎn)化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標(biāo)運算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.15、13【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時輸出的b值為13.故答案為13.16、3【解析】
作出可行域,可得當(dāng)直線經(jīng)過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點,當(dāng)直線經(jīng)過點時,.故答案為:3.【點睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)詳見解析.【解析】
試題分析:(1)由題得,根據(jù)曲線在點處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數(shù)的單調(diào)區(qū)間;(2)由(1)得根據(jù)由,整理得,設(shè),轉(zhuǎn)化為函數(shù)的最值,即可作出證明.試題解析:(1)由題得,函數(shù)的定義域為,,因為曲線在點處的切線方程為,所以解得.令,得,當(dāng)時,,在區(qū)間內(nèi)單調(diào)遞減;當(dāng)時,,在區(qū)間內(nèi)單調(diào)遞增.所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)由(1)得,.由,得,即.要證,需證,即證,設(shè),則要證,等價于證:.令,則,∴在區(qū)間內(nèi)單調(diào)遞增,,即,故.18、;.【解析】
設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數(shù)學(xué)期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于??碱}.19、(1)曲線的普通方程為:;曲線的普通方程為:(2)【解析】
(1)消去曲線參數(shù)方程中的參數(shù),求得和的普通方程.(2)設(shè)出過原點的直線的極坐標(biāo)方程,代入曲線的極坐標(biāo)方程,求得的表達式,結(jié)合三角函數(shù)值域的求法,求得的最小值.【詳解】(1)曲線的普通方程為:;曲線的普通方程為:.(2)設(shè)過原點的直線的極坐標(biāo)方程為;由得,所以曲線的極坐標(biāo)方程為在曲線中,.由得曲線的極坐標(biāo)方程為,所以而到直線與曲線的交點的距離為,因此,即的最小值為.【點睛】本小題主要考查參數(shù)方程化為普通方程,考查直角坐標(biāo)方程化為極坐標(biāo)方程,考查極坐標(biāo)系下距離的有關(guān)計算,屬于中檔題.20、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)的取值范圍是;對應(yīng)的的值為.【解析】
(1)當(dāng)時,求的導(dǎo)數(shù)可得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個極值點,,且,利用導(dǎo)函數(shù),可得的范圍,再表達,構(gòu)造新函數(shù)可求的取值范圍,從而可求取到最小值時所對應(yīng)的的值.【詳解】(1)函數(shù)由條件得函數(shù)的定義域:,當(dāng)時,,所以:,時,,當(dāng)時,,當(dāng),時,,則函數(shù)的單調(diào)增區(qū)間為:,單調(diào)遞減區(qū)間為:,;(2)由條件得:,,由條件得有兩根:,,滿足,△,可得:或;由,可得:.,函數(shù)的對稱軸為,,所以:,;,可得:,,,則:,所以:;所以:,令,,,則,因為:時,,所以:在,上是單調(diào)遞減,在,上單調(diào)遞增,因為:,(1),,(1),所以,;即的取值范圍是:,;,所以有,則,;所以當(dāng)取到最小值時所對應(yīng)的的值為;【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)區(qū)間問題,考查利用導(dǎo)數(shù)求函數(shù)的最值,體現(xiàn)了轉(zhuǎn)化的思想方法,屬于難題.21、(1)(2)證明見解析【解析】
(1)依題意可得,考慮到,則有再分類討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無解,后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030發(fā)酵非乳飲料行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030雙點膠技術(shù)行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 2025-2030原味豆奶市場發(fā)展現(xiàn)狀調(diào)查及供需格局分析預(yù)測研究報告
- 2025-2030鹵化丁基橡膠行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030升壓電源變壓器行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 面試技巧與心理分析的試題及答案
- 精確把握2024人力資源管理師考試試題及答案
- 監(jiān)理工程師沖刺復(fù)習(xí)試題及答案
- 計算機二級考試全景掃描試題及答案
- 育嬰師應(yīng)掌握的法律法規(guī)試題及答案
- 2023年江蘇省中學(xué)生生物學(xué)競賽(奧賽)初賽試題和答案
- 2020年(汽車行業(yè))汽車行業(yè)英文縮寫
- 舞蹈素質(zhì)測試表
- DB15T 1417-2018 膠粉改性瀝青及混合料設(shè)計與施工規(guī)范
- 基于核心素養(yǎng)導(dǎo)向的初中數(shù)學(xué)試題命制策略與實例課件
- 城市環(huán)境衛(wèi)生工作物資消耗定額
- 學(xué)校衛(wèi)生監(jiān)督課件
- 物理人教版(2019)必修第二冊5.2運動的合成與分解(共19張ppt)
- 中國航信離港系統(tǒng)講義
- 6000m3內(nèi)浮頂油罐設(shè)計
- 食堂管理考核評分表
評論
0/150
提交評論