2022年江蘇省鎮(zhèn)江市鎮(zhèn)江中學數(shù)學高三第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2022年江蘇省鎮(zhèn)江市鎮(zhèn)江中學數(shù)學高三第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2022年江蘇省鎮(zhèn)江市鎮(zhèn)江中學數(shù)學高三第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2022年江蘇省鎮(zhèn)江市鎮(zhèn)江中學數(shù)學高三第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2022年江蘇省鎮(zhèn)江市鎮(zhèn)江中學數(shù)學高三第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為虛數(shù)單位,為復數(shù),若為實數(shù),則()A. B. C. D.2.已知,,則()A. B. C.3 D.43.若平面向量,滿足,則的最大值為()A. B. C. D.4.已知集合,,則()A. B.C. D.5.已知集合A,則集合()A. B. C. D.6.如圖所示,網(wǎng)絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.87.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.48.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.9.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A.1 B. C. D.10.設、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.311.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米12.曲線在點處的切線方程為,則()A. B. C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.在中,若,則的范圍為________.14.已知,,,且,則的最小值為___________.15.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.16.函數(shù)(為自然對數(shù)的底數(shù),),若函數(shù)恰有個零點,則實數(shù)的取值范圍為__________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l的極坐標方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.18.(12分)已知矩陣,.求矩陣;求矩陣的特征值.19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),為上的動點,點滿足,點的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.20.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調遞增區(qū)間;(2)已知,若,,,求的面積.21.(12分)已知函數(shù),,若存在實數(shù)使成立,求實數(shù)的取值范圍.22.(10分)在平面直角坐標系中,有一個微型智能機器人(大小不計)只能沿著坐標軸的正方向或負方向行進,且每一步只能行進1個單位長度,例如:該機器人在點處時,下一步可行進到、、、這四個點中的任一位置.記該機器人從坐標原點出發(fā)、行進步后落在軸上的不同走法的種數(shù)為.(1)分別求、、的值;(2)求的表達式.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

可設,將化簡,得到,由復數(shù)為實數(shù),可得,解方程即可求解【詳解】設,則.由題意有,所以.故選:B【點睛】本題考查復數(shù)的模長、除法運算,由復數(shù)的類型求解對應參數(shù),屬于基礎題2、A【解析】

根據(jù)復數(shù)相等的特征,求出和,再利用復數(shù)的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數(shù)的特征和復數(shù)的模,屬于基礎題.3、C【解析】

可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質,化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.4、C【解析】

求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.5、A【解析】

化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.6、A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.7、A【解析】

根據(jù)題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.8、A【解析】

根據(jù)是中點這一條件,將棱錐的高轉化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.9、A【解析】

設,因為,得到,利用直線的斜率公式,得到,結合基本不等式,即可求解.【詳解】由題意,拋物線的焦點坐標為,設,因為,即線段的中點,所以,所以直線的斜率,當且僅當,即時等號成立,所以直線的斜率的最大值為1.故選:A.【點睛】本題主要考查了拋物線的方程及其應用,直線的斜率公式,以及利用基本不等式求最值的應用,著重考查了推理與運算能力,屬于中檔試題.10、C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗椤⒎謩e是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c睛】本題主要考查函數(shù)性質奇偶性的應用。11、D【解析】

根據(jù)題意,是一個等比數(shù)列模型,設,由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.12、B【解析】

求函數(shù)導數(shù),利用切線斜率求出,根據(jù)切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數(shù)的幾何意義,切線方程,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

借助正切的和角公式可求得,即則通過降冪擴角公式和輔助角公式可化簡,由,借助正弦型函數(shù)的圖象和性質即可解得所求.【詳解】,所以,.因為,所以,所以.故答案為:.【點睛】本題考查了三角函數(shù)的化簡,重點考查學生的計算能力,難度一般.14、【解析】

由,先將變形為,運用基本不等式可得最小值,再求的最小值,運用函數(shù)單調性即可得到所求值.【詳解】解:因為,,,且,所以因為,所以,當且僅當時,取等號,所以令,則,令,則,所以函數(shù)在上單調遞增,所以所以則所求最小值為故答案為:【點睛】此題考查基本不等式的運用:求最值,注意變形和滿足的條件:一正二定三相等,考查利用單調性求最值,考查化簡和運算能力,屬于中檔題.15、【解析】

建系,設設,由可得,進一步得到的坐標,再利用數(shù)量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設,則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標法求向量的數(shù)量積,考查學生的運算求解能力,是一道中檔題.16、【解析】

令,則,恰有四個解.由判斷函數(shù)增減性,求出最小值,列出相應不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調遞減,在上單調遞增,則,可得.設的負根為,由題意知,,,,則,.故答案為:.【點睛】本題考查導數(shù)在函數(shù)當中的應用,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).x2+y2=1.(2)16【解析】

(1)直接利用極坐標方程和參數(shù)方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【點睛】本題考查了極坐標方程和參數(shù)方程,圓的弦長,意在考查學生的計算能力和轉化能力.18、;,.【解析】

由題意,可得,利用矩陣的知識求解即可.矩陣的特征多項式為,令,求出矩陣的特征值.【詳解】設矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項式為,令,解得,,即矩陣的兩個特征值為,.【點睛】本題考查矩陣的知識點,屬于??碱}.19、(Ⅰ)(為參數(shù));(Ⅱ)【解析】

(Ⅰ)設點,,則,代入化簡得到答案.(Ⅱ)分別計算,的極坐標方程為,,取代入計算得到答案.【詳解】(Ⅰ)設點,,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標方程為:;,故,極坐標方程為:.,故,,故.【點睛】本題考查了參數(shù)方程,極坐標方程,弦長,意在考查學生的計算能力和轉化能力.20、(1)最小正周期為,單調遞增區(qū)間為;(2).【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結合余弦定理解三角形,進行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當時,即,則由,,得,則,此時,的面積為;②當時,則,即,則由,解得,,.綜上,的面積為.【點睛】本題考查正弦型函數(shù)的周期和單調區(qū)間的求解,同時也考查了三角形面積的計算,涉及余弦定理解三角形的應用,考查計算能力,屬于中等題.21、【解析】試題分析:先將問題“存在實數(shù)使成立”轉化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數(shù)使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數(shù)的取值范圍是.考點:柯西不等式即運用和轉化與化歸的數(shù)學思想的運用.22、(1),,,(2)【解析】

(1)根據(jù)機器人的進行規(guī)律可確定、、的值;(2)首先根據(jù)機器人行進規(guī)則知機器人沿軸行進步,必須沿軸負方向行進相同的步數(shù),而余下的每一步行進方向都有兩個選擇(向上或向下)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論