




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.把拋物線先向左平移個單位,再向下平移個單位,得到的拋物線的表達式是()A. B.C. D.2.有一個矩形苗圃園,其中一邊靠墻,另外三邊用長為的籬笆圍成.已知墻長為若平行于墻的一邊長不小于則這個苗圃園面積的最大值和最小值分別為()A. B.C. D.3.已知拋物線y=x2-8x+c的頂點在x軸上,則c的值是()A.16 B.-4 C.4 D.84.如圖,AB為⊙O的直徑,CD為⊙O的弦,∠ACD=40°,則∠BAD的大小為()A.60o B.30o C.45o D.50o5.如圖所示,△ABC內(nèi)接于⊙O,∠C=45°.AB=4,則⊙O的半徑為()A. B.4C. D.56.如圖,AB是⊙O的直徑,CD是⊙O的弦.若∠BAD=24°,則的度數(shù)為()A.24° B.56° C.66° D.76°7.下列事件中,屬于必然事件的是()A.任意購買一張電影票,座位號是奇數(shù)B.明天晚上會看到太陽C.五個人分成四組,這四組中有一組必有2人D.三天內(nèi)一定會下雨8.在如圖所示的網(wǎng)格紙中,有A、B兩個格點,試取格點C,使得△ABC是等腰三角形,則這樣的格點C的個數(shù)是()A.4 B.6 C.8 D.109.如圖,在平面直角坐標系中,將正方形繞點逆時針旋轉(zhuǎn)45°后得到正方形.依此方式,繞點連續(xù)旋轉(zhuǎn)2020次,得到正方形,如果點的坐標為,那么點的坐標為()A. B. C. D.10.一元二次方程的根的情況為()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根11.已知菱形的邊長為,若對角線的長為,則菱形的面積為()A. B. C. D.12.在九年級體育中考中,某班參加仰臥起坐測試的一組女生(每組8人)測試成績?nèi)缦拢▎挝唬捍?分):46,44,45,42,48,46,47,46.則這組數(shù)據(jù)的中位數(shù)為()A.42 B.45 C.46 D.48二、填空題(每題4分,共24分)13.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標為5,BE=3DE,則k的值為______.14.如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應點D′的坐標是___________.15.如圖,是的直徑,點和點是上位于直徑兩側(cè)的點,連結,,,,若的半徑是,,則的值是_____________.16.如圖,將一個含30°角的三角尺ABC放在直角坐標系中,使直角頂點C與原點O重合,頂點A,B分別在反比例函數(shù)y=﹣和y=的圖象上,則k的值為___.17.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.18.如圖,四邊形是菱形,經(jīng)過點、、與相交于點,連接、,若,則的度數(shù)為__________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中有點A(1,5),B(2,2),將線段AB繞P點逆時針旋轉(zhuǎn)90°得到線段CD,A和C對應,B和D對應.(1)若P為AB中點,畫出線段CD,保留作圖痕跡;(2)若D(6,2),則P點的坐標為,C點坐標為.(3)若C為直線上的動點,則P點橫、縱坐標之間的關系為.20.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作AB的垂線交AC的延長線于點F.(1)求證:;(2)過點C作CG⊥BF于G,若AB=5,BC=2,求CG,F(xiàn)G的長.21.(8分)如圖,無人機在空中處測得地面、兩點的俯角分別為60?、45?,如果無人機距地面高度米,點、、在同水平直線上,求、兩點間的距離.(結果保留根號)22.(10分)已知:如圖,在矩形中,點為上一點,連接,過點作于點,與相似嗎?請說明理由.23.(10分)如圖,AB是⊙O的直徑,CD切⊙O于點C,BE⊥CD于E,連接AC,BC.(1)求證:BC平分∠ABE;(2)若⊙O的半徑為3,cosA=,求CE的長.24.(10分)(1)解方程:(2)已知關于的方程無解,方程的一個根是.①求和的值;②求方程的另一個根.25.(12分)如圖,二次函數(shù)y=﹣2x2+x+m的圖象與x軸的一個交點為A(1,0),另一個交點為B,且與y軸交于點C.(1)求m的值;(2)求點B的坐標;(3)該二次函數(shù)圖象上是否有一點D(x,y)使S△ABD=S△ABC,求點D的坐標.26.有一個直徑為1m的圓形鐵皮,要從中剪出一個最大的圓心角為90°的扇形ABC,如圖所示.(1)求被剪掉陰影部分的面積:(2)用所留的扇形鐵皮圍成一個圓錐,該圓錐的底面圓的半徑是多少?
參考答案一、選擇題(每題4分,共48分)1、B【分析】先求出平移后的拋物線的頂點坐標,再利用頂點式拋物線解析式寫出即可.【詳解】解:拋物線y=-x1的頂點坐標為(0,0),
先向左平移1個單位再向下平移1個單位后的拋物線的頂點坐標為(-1,-1),
所以,平移后的拋物線的解析式為y=-(x+1)1-1.
故選:B.【點睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用根據(jù)規(guī)律利用點的變化確定函數(shù)解析式.2、C【分析】設垂直于墻面的長為xm,則平行于墻面的長為(20-2x)m,這個苗圃園的面積為ym2,根據(jù)二次函數(shù)的圖象及性質(zhì)求最值即可.【詳解】解:設垂直于墻面的長為xm,則平行于墻面的長為(20-2x)m,這個苗圃園的面積為ym2由題意可得y=x(20-2x)=-2(x-5)2+50,且8≤20-2x≤15解得:2.5≤x≤6∵-2<0,二次函數(shù)圖象的對稱軸為直線x=5∴當x=5時,y取最大值,最大值為50;當x=2.5時,y取最小值,最小值為37.5;故選C.【點睛】此題考查的是二次函數(shù)的應用,掌握二次函數(shù)的圖象及性質(zhì)是解題關鍵.3、A【分析】頂點在x軸上,所以頂點的縱坐標是0.據(jù)此作答.【詳解】∵二次函數(shù)y=-8x+c的頂點的橫坐標為x=-
=
-=4,∵頂點在x軸上,
∴頂點的坐標是(4,0),
把(4,0)代入y=-8x+c中,得:16-32+c=0,解得:c=16,故答案為A【點睛】本題考查求拋物線頂點縱坐標的公式,比較簡單.4、D【分析】把∠DAB歸到三角形中,所以連結BD,利用同弧所對的圓周角相等,求出∠A的度數(shù),AB為直徑,由直徑所對圓周角為直角,可知∠DAB與∠B互余即可.【詳解】連結BD,∵同弧所對的圓周角相等,∴∠B=∠C=40o,∵AB為直徑,∴∠ADB=90o,∴∠DAB+∠B=90o,∴∠DAB=90o-40o=50o.故選擇:D.【點睛】本題考查圓周角問題,關鍵利用同弧所對圓周角轉(zhuǎn)化為三角形的內(nèi)角,掌握直徑所對圓周角為直角,會利用余角定義求角.5、A【解析】試題解析:連接OA,OB.∴在中,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.6、C【分析】先求出∠B的度數(shù),然后再根據(jù)圓周角定理的推論解答即可.【詳解】∵AB是⊙O的直徑∴∵∠BAD=24°∴又∵∴=66°故答案為:C.【點睛】本題考查了圓周角定理的推論:①在同圓或等圓中同弧或等弧所對圓周角相等;②直徑所對圓周角等于90°7、C【分析】根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】A、任意購買一張電影票,座位號是奇數(shù)是隨機事件;B、明天晚上會看到太陽是不可能事件;C、五個人分成四組,這四組中有一組必有2人是必然事件;D、三天內(nèi)一定會下雨是隨機事件;故選:C.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.8、C【分析】分AB是腰長時,根據(jù)網(wǎng)格結構,找出一個小正方形與A、B頂點相對的頂點,連接即可得到等腰三角形,AB是底邊時,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等,AB垂直平分線上的格點都可以作為點C,然后相加即可得解.【詳解】解:如圖,分情況討論:①AB為等腰△ABC的底邊時,符合條件的C點有4個;②AB為等腰△ABC其中的一條腰時,符合條件的C點有4個.故選C.【點睛】本題考查等腰三角形的判定,解題的關鍵是掌握等腰三角形的判定,分情況討論解決.9、A【分析】根據(jù)圖形可知:點B在以O為圓心,以OB為半徑的圓上運動,由旋轉(zhuǎn)可知:將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,相當于將線段OB繞點O逆時針旋轉(zhuǎn)45°,可得對應點B的坐標,根據(jù)規(guī)律發(fā)現(xiàn)是8次一循環(huán),可得結論.【詳解】解:∵四邊形OABC是正方形,且OA=,
∴A1(,),
如圖,由旋轉(zhuǎn)得:OA=OA1=OA2=OA3=…=,
∵將正方形OABC繞點O逆時針旋轉(zhuǎn)45°后得到正方形OA1B1C1,
相當于將線段OA繞點O逆時針旋轉(zhuǎn)45°,依次得到∠AOA1=∠A1OA2=∠A2OA3=…=45°,
∴A1(1,1),A2(0,),A3(,),A4(,0)…,
發(fā)現(xiàn)是8次一循環(huán),所以2020÷8=252…余4,
∴點A2020的坐標為(,0);故選:A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.也考查了坐標與圖形的變化、規(guī)律型:點的坐標等知識,解題的關鍵是學會從特殊到一般的探究規(guī)律的方法,屬于中考??碱}型.10、D【分析】先根據(jù)計算判別式的值,然后根據(jù)判別式的意義判斷方程根的情況.【詳解】因為△=,所以方程無實數(shù)根.故選:D.【點睛】本題考查了根的判別式:一元二次方程的根與有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.11、B【分析】先求出對角線AC的長度,再根據(jù)“菱形的面積等于對角線乘積的一半”,即可得出答案.【詳解】根據(jù)題意可得:AB=BC=CD=AD=13cm,BD=10cm∵ABCD為菱形∴BD⊥AC,BO=DO=AO=AC=2AO=24cm∴故答案選擇B.【點睛】本題考查的是菱形,難度適中,需要熟練掌握菱形面積的兩種求法.12、C【解析】根據(jù)中位數(shù)的定義,把8個數(shù)據(jù)從小到大的順序依次排列后,求第4,第5位兩數(shù)的平均數(shù)即為本組數(shù)據(jù)的中位數(shù).【詳解】解:把數(shù)據(jù)由小到大排列為:42,44,45,46,46,46,47,48∴中位數(shù)為.故答案為:46.【點睛】找中位數(shù)的時候一定要先排好大小順序,再根據(jù)奇數(shù)個數(shù)和偶數(shù)個數(shù)來確定中位數(shù).如果是奇數(shù)個,則正中間的數(shù)字即為中位數(shù);如果是偶數(shù)個,則找中間兩個數(shù)的平均數(shù)為中位數(shù).先將數(shù)據(jù)按從小到大順序排列是求中位數(shù)的關鍵.二、填空題(每題4分,共24分)13、【解析】過點D作DF⊥BC于點F,由菱形的性質(zhì)可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質(zhì)可求k的值.【詳解】如圖,過點D作DF⊥BC于點F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點C的橫坐標為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設點C(5,m),點D(1,m+3),∵反比例函數(shù)y=圖象過點C,D,∴5m=1×(m+3),∴m=,∴點C(5,),∴k=5×=,故答案為:【點睛】本題考查了反比例函數(shù)圖象點的坐標特征,菱形的性質(zhì),勾股定理,求出DE的長度是本題的關鍵.14、(2,10)或(﹣2,0)【解析】∵點D(5,3)在邊AB上,∴BC=5,BD=5﹣3=2,①若順時針旋轉(zhuǎn),則點D′在x軸上,OD′=2,所以,D′(﹣2,0),②若逆時針旋轉(zhuǎn),則點D′到x軸的距離為10,到y(tǒng)軸的距離為2,所以,D′(2,10),綜上所述,點D′的坐標為(2,10)或(﹣2,0).15、【分析】根據(jù)題意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【詳解】解:∵是的直徑,∴∠ADB=90°∴∠ACD=∠ABD∵的半徑是,,∴故答案為:【點睛】本題考查的是銳角三角函數(shù)值.16、1.【分析】過A作AE⊥y軸于E過B作BF⊥y軸于F,通過△AOE∽△BOF,得到,設,于是得到AE=-m,,從而得到,,于是求得結果.【詳解】解:過作軸于過作軸于,,,,,,,,設,,,,,,.故答案為1.【點睛】此題考查相似三角形的判定與性質(zhì),反比例函數(shù)圖象上點的坐標特征,解題關鍵在于作輔助線和利用三角函數(shù)進行解答.17、.【詳解】解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.18、【分析】根據(jù)菱形的性質(zhì)得到∠ACB=∠DCB=(180°?∠D)=51°,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠AEB=∠D=78°,由三角形的外角的性質(zhì)即可得到結論.【詳解】解:∵四邊形ABCD是菱形,∠D=78°,
∴∠ACB=∠DCB=(180°?∠D)=51°,
∵四邊形AECD是圓內(nèi)接四邊形,
∴∠AEB=∠D=78°,
∴∠EAC=∠AEB?∠ACE=27°,
故答案為:27°.【點睛】本題考查了菱形的性質(zhì),三角形的外角的性質(zhì),圓內(nèi)接四邊形的性質(zhì),熟練掌握菱形的性質(zhì)是解題的關鍵.三、解答題(共78分)19、(1)見解析;(2)(4,4),(3,1);(3).【分析】(1)根據(jù)題意作線段CD即可;(2)根據(jù)題意畫出圖形即可解決問題;(3)因為點C的運動軌跡是直線,所以點P的運動軌跡也是直線,找到當C坐標為(0,0)時,P'的坐標,利用待定系數(shù)法即可求出關系式.【詳解】(1)如圖所示,線段CD即為所求,(2)如圖所示,P點坐標為(4,4),C點坐標為(3,1),故答案為:(4,4),(3,1).(3)如圖所示,∵點C的運動軌跡是直線,∴點P的運動軌跡也是直線,當C點坐標為(3,1)時,P點坐標為(4,4),當C點坐標為(0,0)時,P'的坐標為(3,2),設直線PP'的解析式為,則有,解得,∴P點橫、縱坐標之間的關系為,故答案為:.【點睛】本題考查網(wǎng)格作圖和一次函數(shù)的解析式,熟練掌握旋轉(zhuǎn)變換的特征是解題的關鍵.20、(1)見解析;(2)CF=,F(xiàn)G=,【分析】(1)連接AE,利用等腰三角形的三線合一的性質(zhì)證明∠EAB=∠EAC即可解決問題.(2)證明△BCG∽△ABE,可得,由此求出CG,再利用平行線分線段成比例定理求出CF,利用勾股定理即可求出FG.【詳解】(1)證明:連接AE.∵AB是直徑,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∴.(2)解:∵BF⊥AB,CG⊥BF,AE⊥BC∴∠CGB=∠AEB=∠ABF=90°,∵∠CBG+∠ABC=90°,∠ABC+∠BAE=90°,∴∠CBG=∠BAE,∴△BCG∽△ABE,∴,∴,∴CG=2,∵CG∥AB,∴,∴,∴CF=,∴FG===.【點睛】此題主要考查圓與幾何綜合,解題的關鍵是熟知圓的基本性質(zhì)、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì).21、A、B兩點間的距離為100(1+)米【分析】如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計算AD+BD即可.【詳解】∵無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在中,∵=,∴AD==100,在中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點間的距離為100(1+)米.【點睛】本題考查了解直角三角形的應用-仰角俯角問題:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.22、相似,見解析【分析】先得出,,再根據(jù)兩角對應相等兩個三角形相似即可判斷.【詳解】解:相似,理由如下:在矩形中,,∴,∵,∴,∴,∴.【點睛】本題考查矩形的性質(zhì)、相似三角形的判定等知識,解題的關鍵是熟練掌握相似三角形的判定定理,屬于中考??碱}型.23、(1)證明見解析;(2).【分析】(1)根據(jù)切線的性質(zhì)得OC⊥DE,則可判斷OC∥BE,根據(jù)平行線的性質(zhì)得∠OCB=∠CBE,加上∠OCB=∠CBO,所以∠OBC=∠CBE;(2)由已知數(shù)據(jù)可求出AC,BC的長,易證△BEC∽△BCA,由相似三角形的性質(zhì)即可求出CE的長.【詳解】(1)證明:∵CD是⊙O的切線,∴OC⊥DE,而BE⊥DE,∴OC∥BE,∴∠OCB=∠CBE,而OB=OC,∴∠OCB=∠CBO,∴∠OBC=∠CBE,即BC平分∠ABE;(2)∵⊙O的半徑為3,∴AB=6,∵AB是⊙O的直徑,∴∠ACB=90°,∵cosA=,∴=,∴AC=2,∴BC==2,∵∠ABC=∠ECB,∠ACB=∠BEC=90°,∴△BEC∽△BCA,∴=,即=,∴CE=.【點睛】本題考查了切線的性質(zhì),平行線的判定和性質(zhì),勾股定理的運用以及相似三角形的判定和性質(zhì),熟記和圓有關的各種性質(zhì)定理是解題的關鍵.24、(1),;(2)①,,②另一個根是1.【分析】(1)用因式分解法解方程即可;(2)①根據(jù)分式方程無解,先求出m的值,然后將m代入一元二次方程中求出k的值即可;②根據(jù)根與系數(shù)的關系可求出另一個根.【詳解】(1)原方程可化為或解得:,(2)①解:將分式方程兩邊同時,得到,解得∵分式方程無解,,把代入方程,得求得②根據(jù)一元二次方程根與系數(shù)的關系可得∵∴另外一個根是1【點睛】本題主要考查解一元二次方程及一元二次方程根與系數(shù)的關系,分式方程無解問題,掌握分式方程無解問題的方法及一元二次方程根與系數(shù)的關系是解題的關鍵.25、(1)1;(2)B(﹣,0);(3)D的坐標是(,1)或(,﹣1)或(,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 全國粵教版信息技術八年級下冊第二單元第十五課《數(shù)碼顯示與無線通信的實現(xiàn)》教學設計
- 云南經(jīng)貿(mào)外事職業(yè)學院《社會問題與對策》2023-2024學年第二學期期末試卷
- 遼寧建筑職業(yè)學院《中學生物學課程標準與教材研究》2023-2024學年第二學期期末試卷
- 重慶移通學院《精細化工綜合實訓》2023-2024學年第二學期期末試卷
- 廣西體育高等??茖W?!斗b美學》2023-2024學年第二學期期末試卷
- 南昌交通學院《電子科學與技術專業(yè)創(chuàng)新課程》2023-2024學年第二學期期末試卷
- 克拉瑪依職業(yè)技術學院《新能源汽車檢測與維修》2023-2024學年第二學期期末試卷
- 濱州學院《酒店電子商務》2023-2024學年第二學期期末試卷
- 重慶工程職業(yè)技術學院《現(xiàn)代傳感器技術及虛擬儀器》2023-2024學年第二學期期末試卷
- 福建農(nóng)業(yè)職業(yè)技術學院《會計學基礎》2023-2024學年第二學期期末試卷
- 初中語文九年級下冊閱讀理解50篇附答案解析
- 《陶瓷造型工藝》課程標準
- 火電廠各指標指標解析(最新版)
- 病毒性腦炎患者的護理查房ppt課件
- TPU材料項目可行性研究報告寫作參考范文
- 第二編 債權總論
- 試用期考核合格證明表
- 常見八種疾病
- 膠粘劑基礎知識及產(chǎn)品詳解(課堂PPT)
- 鐵路總公司近期處理的七起突出質(zhì)量問題的通報
- 常用洪水預報模型介紹
評論
0/150
提交評論