




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設復數(shù),則=()A.1 B. C. D.2.已知復數(shù)滿足,其中是虛數(shù)單位,則復數(shù)在復平面中對應的點到原點的距離為()A. B. C. D.3.已知,,則等于().A. B. C. D.4.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:①越小,則國民分配越公平;②設勞倫茨曲線對應的函數(shù)為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④5.函數(shù)的值域為()A. B. C. D.6.已知函數(shù),當時,的取值范圍為,則實數(shù)m的取值范圍是()A. B. C. D.7.若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是()A. B. C. D.8.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有9.函數(shù)的大致圖象為A. B.C. D.10.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.11.在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.12.當時,函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,則的最小值是__.14.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.15.已知橢圓的左、右焦點分別為、,過橢圓的右焦點作一條直線交橢圓于點、.則內切圓面積的最大值是_________.16.將2個相同的紅球和2個相同的黑球全部放入甲、乙、丙、丁四個盒子里,其中甲、乙盒子均最多可放入2個球,丙、丁盒子均最多可放入1個球,且不同顏色的球不能放入同一個盒子里,共有________種不同的放法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點N到平面CDM的距離.18.(12分)如圖1,與是處在同-個平面內的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.19.(12分)已知等比數(shù)列中,,是和的等差中項.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.20.(12分)△的內角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.21.(12分)已知集合,.(1)若,則;(2)若,求實數(shù)的取值范圍.22.(10分)已知關于的不等式有解.(1)求實數(shù)的最大值;(2)若,,均為正實數(shù),且滿足.證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)復數(shù)的除法運算,代入化簡即可求解.【詳解】復數(shù),則故選:A.【點睛】本題考查了復數(shù)的除法運算與化簡求值,屬于基礎題.2、B【解析】
利用復數(shù)的除法運算化簡z,復數(shù)在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數(shù)在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數(shù)的除法運算,模長公式和幾何意義,考查了學生概念理解,數(shù)學運算,數(shù)形結合的能力,屬于基礎題.3、B【解析】
由已知條件利用誘導公式得,再利用三角函數(shù)的平方關系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結合解得,所以,故選B.【點睛】本題考查三角函數(shù)的誘導公式、同角三角函數(shù)的平方關系以及三角函數(shù)的符號與位置關系,屬于基礎題.4、A【解析】
對于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.5、A【解析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域為.故選:A.【點睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎題.6、C【解析】
求導分析函數(shù)在時的單調性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結果.【詳解】當時,,令,則;,則,∴函數(shù)在單調遞增,在單調遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點睛】本題考查了利用導數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質,屬于難題.7、C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題.8、C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當時,因此有常數(shù),因此是等差數(shù)列,因此當不是等差數(shù)列時,一定有,故本說法正確;D:當時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎題.9、A【解析】
因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.10、B【解析】
根據(jù)在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.11、B【解析】
計算出的值,推導出,再由,結合數(shù)列的周期性可求得數(shù)列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導出數(shù)列的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.12、B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調性,導數(shù)的應用以及數(shù)學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
因為,展開后利用基本不等式,即可得到本題答案.【詳解】由,得,所以,當且僅當,取等號.故答案為:【點睛】本題主要考查利用基本不等式求最值,考查學生的轉化能力和運算求解能力.14、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎題.15、【解析】令直線:,與橢圓方程聯(lián)立消去得,可設,則,.可知,又,故.三角形周長與三角形內切圓的半徑的積是三角形面積的二倍,則內切圓半徑,其面積最大值為.故本題應填.點睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結論能明顯體現(xiàn)幾何特征及意義,則考慮利用圖形性質來解決,這就是幾何法.(2)代數(shù)法:若題目的條件和結論能體現(xiàn)一種明確的函數(shù),則可首先建立起目標函數(shù),再求這個函數(shù)的最值,求函數(shù)最值的常用方法有配方法,判別式法,重要不等式及函數(shù)的單調性法等.16、【解析】
討論裝球盒子的個數(shù),計算得到答案.【詳解】當四個盒子有球時:種;當三個盒子有球時:種;當兩個盒子有球時:種.故共有種,故答案為:.【點睛】本題考查了排列組合的綜合應用,意在考查學生的理解能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)因為正方形ABCD所在平面與梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因為平面ABMN,平面ABMN,所以,,因為,所以,因為,所以,所以,因為在直角梯形ABMN中,,所以,所以,所以,因為,所以平面.(2)如圖,取BM的中點E,則,又BM∥AN,所以四邊形ABEN是平行四邊形,所以NE∥AB,又AB∥CD,所以NE∥CD,因為平面CDM,平面CDM,所以NE∥平面CDM,所以點N到平面CDM的距離與點E到平面CDM的距離相等,設點N到平面CDM的距離為h,由可得點B到平面CDM的距離為2h,由題易得平面BCM,所以,且,所以,又,所以由可得,解得,所以點N到平面CDM的距離為.18、(1)證明見解析(2)(3)【解析】
根據(jù)折疊圖形,,由線面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標原點,為軸建立空間直角坐標系,根據(jù),可知,,表示相應點的坐標,分別求得平面與平面的法向量,代入求解.設所求幾何體的體積為,設為高,則,表示梯形BEFD和ABD的面積由,再利用導數(shù)求最值.【詳解】(1)證明:不妨設與的交點為與的交點為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因為平面,所以....(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標原點,為軸建立如圖所示的空間直角坐標系由題意知由可知,則則有,,設平面與平面的法向量分別為則有則所以因為,解得設所求幾何體的體積為,設,則,當時,,當時,在是增函數(shù),在上是減函數(shù)當時,有最大值,即六面體的體積的最大值是【點睛】本題主要考查線線垂直,線面垂直,面面垂直的轉化,二面角的向量求法和空間幾何體的體積,還考查了轉化化歸的思想和運算求解的能力,屬于難題.19、(1)(2)【解析】
(1)用等比數(shù)列的首項和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項公式即可求得結果;(2)把(1)中求得的結果代入bn=an?log2an,求出bn,利用錯位相減法求出Tn.【詳解】(1)設數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點睛】本題考查等比數(shù)列的通項公式和等差中項的概念以及錯位相減法求和,考查運算能力,屬中檔題.20、(I);(II).【解析】
試題分析:(I)由已知可得;(II)依題意得:的周長為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長為.考點:1、解三角形;2、三角恒等變換.21、(1);(2)【解析】
(1)將代入可得集合B,解對數(shù)不等式可得集合A,由并集運算即可得解.(2)由可知B為A的子集,即;當符合題意,當B不為空集時,由不等式關系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因為,故;若,即時,,符合題意;若,即時,,解得;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查了集合的并
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廚房東西轉讓合同范例
- 交貨日期合同范本模板
- 叛逆孩子教育合同范本
- 個體發(fā)包合同范本
- 軍隊物資采購合同范本
- 業(yè)務拓展居間合同范本
- 古董古玩交易合同范本
- 《基本不等式》教學反思
- 湖北省部分重點中學2024-2025學年高二上學期期末聯(lián)考語文試題
- 《一次成功的實驗》教案
- 中小學生防性侵教育課件主題班會
- 倉儲管理改善計劃表
- 人教版四年級音樂下冊(簡譜)全冊課件【完整版】
- 高中語文《茶館》第二課時課件
- 新教科版五年級上冊科學全冊重點題型練習課件(含答案)
- 堡壘機產品功能
- 發(fā)展?jié)h語-初級讀寫-I-第八課
- 跨境電商基礎PPT完整全套教學課件
- 冀人版五年級科學下冊同步練習(全冊)
- 直殼體螺桿鉆具維護使用手冊
- 蕉嶺縣幅地質圖說明書
評論
0/150
提交評論