吉林省長春市凈月區(qū)委托管理學校2022-2023學年數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第1頁
吉林省長春市凈月區(qū)委托管理學校2022-2023學年數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第2頁
吉林省長春市凈月區(qū)委托管理學校2022-2023學年數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第3頁
吉林省長春市凈月區(qū)委托管理學校2022-2023學年數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第4頁
吉林省長春市凈月區(qū)委托管理學校2022-2023學年數(shù)學九年級第一學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.一元二次方程的解是()A.x1=2,x2=-2 B.x=-2 C.x=2 D.x1=2,x2=02.如圖所示,已知△ABC中,BC=12,BC邊上的高h=6,D為BC上一點,EF∥BC,交AB于點E,交AC于點F,設點E到邊BC的距離為x.則△DEF的面積y關于x的函數(shù)圖象大致為()A. B. C. D.3.四張背面完全相同的卡片,正面分別畫有平行四邊形、菱形、等腰梯形、圓,現(xiàn)從中任意抽取一張,卡片上所畫圖形恰好是軸對稱圖形的概率為()A.1 B. C. D.4.如圖,P為平行四邊形ABCD的對稱中心,以P為圓心作圓,過P的任意直線與圓相交于點M,N.則線段BM,DN的大小關系是()A.BM>DN B.BM<DN C.BM=DN D.無法確定5.如圖,在正方形紙片ABCD中,E,F(xiàn)分別是AD,BC的中點,沿過點B的直線折疊,使點C落在EF上,落點為N,折痕交CD邊于點M,BM與EF交于點P,再展開.則下列結(jié)論中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等邊三角形.正確的有()A.1個 B.2個 C.3個 D.4個6.老師設計了接力游戲,用合作的方式完成“求拋物線的頂點坐標”,規(guī)則如下:每人只能看到前一人給的式子,并進行一步計算,再將結(jié)果傳遞給下一人,最后完成解答.過程如圖所示:接力中,自己負責的一步出現(xiàn)錯誤的是()A.只有丁 B.乙和丁 C.乙和丙 D.甲和丁7.如圖,過x軸正半軸上的任意一點P,作y軸的平行線,分別與反比例函數(shù)和的圖象交于A、B兩點.若點C是y軸上任意一點,連接AC、BC,則△ABC的面積為()A.3 B.4 C.5 D.108.如圖,在平面直角坐標系xOy中,正方形ABCD的頂點D在y軸上且A(﹣3,0),B(2,b),則正方形ABCD的面積是()A.20 B.16 C.34 D.259.P(3,-2)關于原點對稱的點的坐標是()A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)10.如圖,⊙O是△ABC的外接圓,連接OA、OB,∠C=40°,則∠OAB的度數(shù)為()A.30° B.40° C.50° D.80°二、填空題(每小題3分,共24分)11.如圖,在矩形ABCD中,∠ABC的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=8,DF=3FC,則BC=__________.12.已知關于x的方程有兩個實數(shù)根,則實數(shù)k的取值范圍為____________.13.在中,,,則______.14.如圖,菱形ABCD中,∠B=120°,AB=2,將圖中的菱形ABCD繞點A沿逆時針方向旋轉(zhuǎn),得菱形AB′C′D′1,若∠BAD′=110°,在旋轉(zhuǎn)的過程中,點C經(jīng)過的路線長為____.15.如圖,⊙O的半徑為6cm,直線AB是⊙O的切線,切點為點B,弦BC∥AO,若∠A=30°,則劣弧的長為cm.16.設分別為一元二次方程的兩個實數(shù)根,則______.17.如圖,PA、PB分別切⊙O于點A、B,若∠P=70°,則∠C的大小為(度).18.已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.三、解答題(共66分)19.(10分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=1.(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤的解集.20.(6分)為提升學生的藝術素養(yǎng),某校計劃開設四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學生必須選修且只能選修一門課程,為保證計劃的有效實施,學校隨機對部分學生進行了一次調(diào)查,并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.學生選修課程統(tǒng)計表課程人數(shù)所占百分比聲樂14舞蹈8書法16攝影合計根據(jù)以上信息,解答下列問題:(1),.(2)求出的值并補全條形統(tǒng)計圖.(3)該校有1500名學生,請你估計選修“聲樂”課程的學生有多少名.(4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎,學校準備從這4人中隨機抽取2人編排“舞蹈”在開班儀式上表演,請用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個班級的概率.21.(6分)已知拋物線C1:y1=a(x﹣h)2+2,直線1:y2=kx﹣kh+2(k≠0).(1)求證:直線l恒過拋物線C的頂點;(2)若a>0,h=1,當t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,求t的取值范圍.(3)點P為拋物線的頂點,Q為拋物線與直線l的另一個交點,當1≤k≤3時,若線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,求a的取值范圍.22.(8分)一只不透明袋子中裝有1個紅球,2個黃球,這些球除顏色外都相同,小明攪勻后從中任意摸出一個球,記錄顏色后放回、攪勻,再從中任意摸出1個球,用樹狀圖或列表法列出摸出球的所有等可能情況,并求兩次摸出的球都是黃色的概率.23.(8分)已知一次函數(shù)的圖象與軸和軸分別交于、兩點,與反比例函數(shù)的圖象分別交于、兩點.(1)如圖,當,點在線段上(不與點、重合)時,過點作軸和軸的垂線,垂足為、.當矩形的面積為2時,求出點的位置;(2)如圖,當時,在軸上是否存在點,使得以、、為頂點的三角形與相似?若存在,求出點的坐標;若不存在,說明理由;(3)若某個等腰三角形的一條邊長為5,另兩條邊長恰好是兩個函數(shù)圖象的交點橫坐標,求的值.24.(8分)如圖,已知△ABC,∠B=90゜,AB=3,BC=6,動點P、Q同時從點B出發(fā),動點P沿BA以1個單位長度/秒的速度向點A移動,動點Q沿BC以2個單位長度/秒的速度向點C移動,運動時間為t秒.連接PQ,將△QBP繞點Q順時針旋轉(zhuǎn)90°得到△,設△與△ABC重合部分面積是S.(1)求證:PQ∥AC;(2)求S與t的函數(shù)關系式,并直接寫出自變量t的取值范圍.25.(10分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠B=60°.(1)求∠ADC的度數(shù);(2)求證:AE是⊙O的切線.26.(10分)某校組織了主題為“我是青奧志愿者”的電子小報作品征集活動,先從中隨機抽取了部分作品,按,,,四個等級進行評分,然后根據(jù)統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:(1)求一共抽取了多少份作品?(2)此次抽取的作品中等級為的作品有份,并補全條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中等級為的扇形圓心角的度數(shù)為;(4)若該校共征集到800份作品,請估計等級為的作品約有多少份?

參考答案一、選擇題(每小題3分,共30分)1、A【分析】首先將原方程移項可得,據(jù)此進一步利用直接開平方法求解即可.【詳解】原方程移項可得:,解得:,,故選:A.【點睛】本題主要考查了直接開平方法解一元二次方程,熟練掌握相關方法是解題關鍵.2、D【分析】可過點A向BC作AH⊥BC于點H,所以根據(jù)相似三角形的性質(zhì)可求出EF,進而求出函數(shù)關系式,由此即可求出答案.【詳解】過點A向BC作AH⊥BC于點H,所以根據(jù)相似比可知:,即EF=2(6-x)所以y=×2(6-x)x=-x2+6x.(0<x<6)該函數(shù)圖象是拋物線的一部分,故選D.【點睛】此題考查根據(jù)幾何圖形的性質(zhì)確定函數(shù)的圖象和函數(shù)圖象的讀圖能力.要能根據(jù)幾何圖形和圖形上的數(shù)據(jù)分析得出所對應的函數(shù)的類型和所需要的條件,結(jié)合實際意義畫出正確的圖象.3、B【解析】以上圖形中軸對稱圖形有菱形、等腰梯形、圓,所以概率為3÷4=.故選B4、C【解析】分析:連接BD,根據(jù)平行四邊形的性質(zhì)得出BP=DP,根據(jù)圓的性質(zhì)得出PM=PN,結(jié)合對頂角的性質(zhì)得出∠DPN=∠BPM,從而得出三角形全等,得出答案.詳解:連接BD,因為P為平行四邊形ABCD的對稱中心,則P是平行四邊形兩對角線的交點,即BD必過點P,且BP=DP,∵以P為圓心作圓,∴P又是圓的對稱中心,∵過P的任意直線與圓相交于點M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.點睛:本題主要考查的是平行四邊形的性質(zhì)以及三角形全等的證明,屬于中等難度的題型.理解平行四邊形的中心對稱性是解決這個問題的關鍵.5、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又點F為BC的中點,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正確;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正確;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等邊三角形,故④正確;由題給條件,證不出CM=DM,故①錯誤.故正確的有②③④,共3個.故選C.6、D【分析】觀察每一項的變化,發(fā)現(xiàn)甲將老師給的式子中等式右邊縮小兩倍,到了丁處根據(jù)丙的式子得出了錯誤的頂點坐標.【詳解】解:,可得頂點坐標為(-1,-6),根據(jù)題中過程可知從甲開始出錯,按照此步驟下去到了丁處可得頂點應為(1,-3),所以錯誤的只有甲和丁.故選D.【點睛】本題考查了求二次函數(shù)的頂點坐標和配方法,解題的關鍵是掌握配方法化頂點式的方法.7、C【分析】設P(a,0),由直線AB∥y軸,則A,B兩點的橫坐標都為a,而A,B分別在反比例函數(shù)圖象上,可得到A點坐標為(a,-),B點坐標為(a,),從而求出AB的長,然后根據(jù)三角形的面積公式計算即可.【詳解】設P(a,0),a>0,∴A和B的橫坐標都為a,OP=a,將x=a代入反比例函數(shù)y=﹣中得:y=﹣,∴A(a,﹣);將x=a代入反比例函數(shù)y=中得:y=,∴B(a,),∴AB=AP+BP=+=,則S△ABC=AB?OP=××a=1.故選C.【點睛】此題考查了反比例函數(shù),以及坐標與圖形性質(zhì),其中設出P的坐標,表示出AB的長是解本題的關鍵.8、C【分析】作BM⊥x軸于M.只要證明△DAO≌△ABM,推出OA=BM,AM=OD,由A(﹣3,0),B(2,b),推出OA=3,OM=2,推出OD=AM=5,再利用勾股定理求出AD即可解決問題.【詳解】解:作軸于.四邊形是正方形,,,,,,,在和中,,,,,,,,,,正方形的面積,故選:.【點睛】本題考查正方形的性質(zhì)、坐標與圖形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識,解題的關鍵是學會添加常用輔助線構造全等三角形解決問題,屬于中考??碱}型.9、B【解析】根據(jù)平面坐標系中點P(x,y)關于原點對稱點是(-x,-y)即可.【詳解】解:關于原點對稱的點的橫縱坐標都互為相反數(shù),因此P(3,-2)關于原點對稱的點的坐標是(-3,2).故答案為B.【點睛】本題考查關于原點對稱點的坐標的關系,解題的關鍵是理解并識記關于原點對稱點的特點.10、C【分析】直接利用圓周角定理得出∠AOB的度數(shù),再利用等腰三角形的性質(zhì)得出答案.【詳解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=(180°﹣80°)=50°.故選:C.【點睛】本題主要考查了三角形的外接圓與外心,圓周角定理.正確得出∠AOB的度數(shù)是解題關鍵.二、填空題(每小題3分,共24分)11、6+1.【分析】先延長EF和BC,交于點G,再根據(jù)條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據(jù)條件判斷三角形BEG為等腰三角形,最后根據(jù)△EFD∽△GFC得出比例式,DF=3FC計算得出CG與DE的倍數(shù)關系,并根據(jù)BG=BC+CG進行計算即可.【詳解】解:延長EF和BC,交于點G∵矩形ABCD中,∠B的角平分線BE與AD交于;∴∠ABE=∠AEB=45°,∴AB=AE=8,∴直角三角形ABE中,BE=8,又∵∠BED的角平分線EF與DC交于點F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=8,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC∵DF=3FC,設CG=x,DE=3x,則AD=8+3x=BC∵BG=BC+CG∴8=8+3x+x解得x=1-1,∴BC=8+3(1-1)=6+1,故答案為:6+1.【點睛】本題主要考查矩形的性質(zhì)、相似三角形性質(zhì)和判定以及等腰三角形的性質(zhì),解決問題的關鍵是得出BG=BE,從而進行計算.12、【分析】根據(jù)一元二次方程有兩個實數(shù)根,可知,列不等式即可求出k的取值范圍.【詳解】∵關于x的方程有兩個實數(shù)根∴解得故答案為:.【點睛】本題考查根據(jù)一元二次方程根的情況求參數(shù),解題的關鍵是掌握判別式與一元二次方程根的情況之間的關系.13、【分析】根據(jù)題意畫出圖形,進而得出cosB=求出即可.【詳解】解:∵∠A=90°,AB=3,BC=4,

則cosB==.

故答案為:.【點睛】本題考查了銳角三角函數(shù)的定義,正確把握銳角三角函數(shù)關系是解題的關鍵.14、π.【分析】連接AC、AC′,作BM⊥AC于M,由菱形的性質(zhì)得出∠BAC=∠D′AC′=30°,由含30°角的直角三角形的性質(zhì)得出BM=AB=1,由勾股定理求出AM=BM=,得出AC=2AM=2,求出∠CAC′=50°,再由弧長公式即可得出結(jié)果.【詳解】解:連接AC、AC′,作BM⊥AC于M,如圖所示:∵四邊形ABCD是菱形,∠B=120°,∴∠BAC=∠D′AC′=30°,∴BM=AB=1,∴AM=BM=,∴AC=2AM=2,∵∠BAD′=110°,∴∠CAC′=110°-30°-30°=50°,∴點C經(jīng)過的路線長==π故答案為:π【點睛】本題考查了菱形的性質(zhì)、含30°角的直角三角形的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、弧長公式;熟練掌握菱形的性質(zhì),由勾股定理和等腰三角形的性質(zhì)求出AC的長是解決問題的關鍵.15、.【解析】根據(jù)切線的性質(zhì)可得出OB⊥AB,從而求出∠BOA的度數(shù),利用弦BC∥AO,及OB=OC可得出∠BOC的度數(shù),代入弧長公式即可得出答案:∵直線AB是⊙O的切線,∴OB⊥AB(切線的性質(zhì)).又∵∠A=30°,∴∠BOA=60°(直角三角形兩銳角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(兩直線平行,內(nèi)錯角相等).又∵OB=OC,∴△OBC是等邊三角形(等邊三角形的判定).∴∠BOC=60°(等邊三角形的每個內(nèi)角等于60°).又∵⊙O的半徑為6cm,∴劣弧的長=(cm).16、1【分析】先根據(jù)m是的一個實數(shù)根得出,利用一元二次方程根與系數(shù)的關系得出,然后對原式進行變形后整體代入即可得出答案.【詳解】∵m是一元二次方程的一個實數(shù)根,∴,即.由一元二次方程根與系數(shù)的關系得出,∴.故答案為:1.【點睛】本題主要考查一元二次方程的根及根與系數(shù)的關系,掌握一元二次方程根與系數(shù)的關系是解題的關鍵.17、55【分析】連接OA,OB,根據(jù)圓周角定理可得解.【詳解】連接OA,OB,∵PA、PB分別切⊙O于點A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°.∴.∴∠C和∠AOB是同弧所對的圓周角和圓心角,∴∠C=∠AOB=55°.18、1.【分析】過點D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=1.故答案為1.【點睛】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關鍵.三、解答題(共66分)19、(1)y=﹣,y=﹣2x+1(2)S△CDE=140;(3)x≥10,或﹣4≤x<0【分析】(1)根據(jù)三角形相似,可求出點坐標,可得一次函數(shù)和反比例函數(shù)解析式;(2)聯(lián)立解析式,可求交點坐標;(3)根據(jù)數(shù)形結(jié)合,將不等式轉(zhuǎn)化為一次函數(shù)和反比例函數(shù)圖象關系.【詳解】(1)由已知,OA=6,OB=1,OD=4∵CD⊥x軸∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴點C坐標為(﹣4,20)∴n=xy=﹣80∴反比例函數(shù)解析式為:y=把點A(6,0),B(0,1)代入y=kx+b得:解得:∴一次函數(shù)解析式為:y=﹣2x+1(2)當=﹣2x+1時,解得x1=10,x2=﹣4當x=10時,y=﹣8∴點E坐標為(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象∴由圖象得,x≥10,或﹣4≤x<0【點睛】本題考查了應用待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式以及用函數(shù)的觀點通過函數(shù)圖象解不等式.20、(1)50、28;(2),補全圖形見解析;(3)估計選修“聲樂”課程的學生有420人;(4)所抽取的2人恰好來自同一個班級的概率為.【分析】(1)由舞蹈人數(shù)及其所占百分比可得的值,聲樂人數(shù)除以總?cè)藬?shù)即可求出的值;(2)總?cè)藬?shù)乘以攝影對應百分比求出其人數(shù),從而補全圖形;(3)利用樣本估計總體思想求解可得;(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出抽取的2名學生恰好來自同一個班級的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1),,即,故答案為50、28;(2),補全圖形如下:(3)估計選修“聲樂”課程的學生有(人.(4)七(1)班的學生記作1,七(2)班的學生記作2,畫樹狀圖為:∴共有12種等可能的結(jié)果數(shù),其中抽取的2名學生恰好來自同一個班級的結(jié)果數(shù)為4,則所抽取的2人恰好來自同一個班級的概率為.【點睛】本題考查了統(tǒng)計表、條形統(tǒng)計圖、樣本估計總體、列表法與樹狀圖法求概率:利用列表法或樹狀圖法展示所有等可能的結(jié)果,再從中選出符合事件或的結(jié)果數(shù)目,然后利用概率公式計算事件或事件的概率.21、(1)證明見解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函數(shù)的性質(zhì)找出拋物線的頂點坐標,將x=h代入一次函數(shù)解析式中可得出點(h,2)在直線1上,進而可證出直線l恒過拋物線C1的頂點;(2)由a>0可得出當x=h=1時y1=a(x﹣h)2+2取得最小值2,結(jié)合當t≤x≤t+3時二次函數(shù)y1=a(x﹣h)2+2的最小值為2,可得出關于t的一元一次不等式組,解之即可得出結(jié)論;(3)令y1=y(tǒng)2可得出關于x的一元二次方程,解之可求出點P,Q的橫坐標,由線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,可得出>1或<﹣1,再結(jié)合1≤k≤3,即可求出a的取值范圍.【詳解】(1)∵拋物線C1的解析式為y1=a(x﹣h)2+2,∴拋物線的頂點為(h,2),當x=h時,y2=kx﹣kh+2=2,∴直線l恒過拋物線C1的頂點;(2)∵a>0,h=1,∴當x=1時,y1=a(x﹣h)2+2取得最小值2,又∵當t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,∴,∴﹣2≤t≤1;(3)令y1=y(tǒng)2,則a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+,∵線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,∴>1或<﹣1,∵k>0,∴0<a<k或﹣k<a<0,又∵1≤k≤3,∴﹣1<a<0或0<a<1.【點睛】本題考查了二次函數(shù)的性質(zhì)、一次函數(shù)圖象上點的坐標特征、二次函數(shù)的最值、解一元二次方程以及解不等式,解題的關鍵是:(1)利用二次函數(shù)的性質(zhì)及一次函數(shù)圖象上點的坐標特征,證出直線l恒過拋物線C的頂點;(2)利用二次函數(shù)的性質(zhì)結(jié)合二次函數(shù)的最值,找出關于t的一元一次不等式組;(3)令y1=y(tǒng)2,求出點P,Q的橫坐標.22、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出的球都是黃球的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:∵共有9種可能的結(jié)果,兩次摸出的球都是黃球的有4種情況,∴兩次摸出的球都是紅球的概率為:.【點睛】此題考查了用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.解題關鍵是求出總情況和所求事件情況數(shù).23、(1)或;(2)存在,或;(3)【分析】(1)根據(jù)已知條件先求出函數(shù)解析式,然后根據(jù)平行得到,得出,又結(jié)合矩形面積=,可求出結(jié)果;(2)先由已知條件推到出點E在A點左側(cè),然后求出C,D兩點坐標,再分以下兩種情況:①當;②當,得出,進而可得出結(jié)果;(3)聯(lián)立一次函數(shù)和反比例函數(shù)的解析式得出方程組,消去y得出關于x的一元二次方程,解出x的值,再分以下兩種情況結(jié)合三角形的三邊關系求解:①5為等腰三角形的腰長;②5為等腰三角形底邊長.進而得出k的值.【詳解】解:(1)當時,,如圖,由軸,軸,易得.∴,即①,而矩形面積為2,∴②.∴由①②得為1或2.∴或.(2)∵,∴,,∴,而,∴點不可能在點右側(cè),當在點左側(cè)時,,聯(lián)立或即,.①當,∴.而,,,,即.∴.②當,∴.即,∴.綜上所述,或.(3)當和時,聯(lián)立,得,,,.①當5為等腰三角形的腰長時,.②當5為等腰三角形底邊長時,.而,∴舍去.因此,綜上,.【點睛】本題是一次函數(shù)和反比例函數(shù)的綜合題,主要考查一次函數(shù)和反比例函數(shù)解析式的求法,圖象與性質(zhì),兩函數(shù)交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論