




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列圖形中,不是軸對稱圖形的是()A. B. C. D.2.如圖,是⊙上的點,則圖中與相等的角是()A. B. C. D.3.下列方程中,關于x的一元二次方程是()A.3(x+1)2=2(x+1) B.+-2=0C.a(chǎn)x2+bx+c=0 D.x2+2x=x2-14.已知反比例函數(shù)的圖象過點則該反比例函數(shù)的圖象位于()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限5.關于x的一元二次方程x2﹣x+sinα=0有兩個相等的實數(shù)根,則銳角α等于()A.15° B.30° C.45° D.60°6.某鋼鐵廠一月份生產(chǎn)鋼鐵560噸,從二月份起,由于改進操作技術,使得第一季度共生產(chǎn)鋼鐵1850噸,問二、三月份平均每月的增長率是多少?若設二、三月份平均每月的增長率為x,則可得方程()A. B.C. D.7.如圖,在正方形網(wǎng)格中,已知的三個頂點均在格點上,則()A.2 B. C. D.8.如圖是拋物線y=a(x+1)2+2的一部分,該拋物線在y軸右側部分與x軸的交點坐標是()A.(,0) B.(1,0) C.(2,0) D.(3,0)9.△DEF和△ABC是位似圖形,點O是位似中心,點D,E,F(xiàn)分別是OA,OB,OC的中點,若△DEF的面積是2,則△ABC的面積是(
)A.2 B.4 C.6 D.810.如圖,AB,BC是⊙O的兩條弦,AO⊥BC,垂足為D,若⊙O的直徑為5,BC=4,則AB的長為()A.2 B.2 C.4 D.5二、填空題(每小題3分,共24分)11.扇形的弧長為10πcm,面積為120πcm2,則扇形的半徑為_____cm.12.如圖,在?ABCD中,AB為⊙O的直徑,⊙O與DC相切于點E,與AD相交于點F,已知AB=12,∠C=60°,則的長為.13.已知在正方形ABCD中,點E、F分別為邊BC與CD上的點,且∠EAF=45°,AE與AF分別交對角線BD于點M、N,則下列結論正確的是_____.①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF14.如圖,半圓O的直徑AB=18,C為半圓O上一動點,∠CAB=а,點G為△ABC的重心.則GO的長為__________.15.已知關于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=-1,x2=2,則二次函數(shù)y=x2+mx+n中,當y<0時,x的取值范圍是________;16.設、是方程的兩個實數(shù)根,則的值為_____.17.一個圓錐的側面積是底面積的3倍,則這個圓錐側面展開圖的圓心角為__________.18.已知二次函數(shù),用配方法化為的形式為_________________,這個二次函數(shù)圖像的頂點坐標為____________.三、解答題(共66分)19.(10分)先化簡,再求值:(x-1)÷(x-),其中x=+120.(6分)如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點A和點B(點A在原點的左側,點B在原點的右側),與y軸交于點C,OB=OC=1.(1)求該拋物線的函數(shù)解析式;(2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接OD,CD,OD交BC于點F,當S△COF:S△CDF=1:2時,求點D的坐標.(1)如圖2,點E的坐標為(0,),在拋物線上是否存在點P,使∠OBP=2∠OBE?若存在,請直接寫出符合條件的點P的坐標;若不存在,請說明理由.21.(6分)某商店代銷一批季節(jié)性服裝,每套代銷成本40元,第一個月每套銷售定價為52元時,可售出180套;應市場變化調整第一個月的銷售價,預計銷售定價每增加1元,銷售量將減少10套.(1)若設第二個月的銷售定價每套增加x元,填寫下表.時間第一個月第二個月每套銷售定價(元)銷售量(套)(2)若商店預計要在這兩個月的代銷中獲利4160元,則第二個月銷售定價每套多少;(3)求當4≤x≤6時第二個月銷售利潤的最大值.22.(8分)我區(qū)某校組織了一次“詩詞大會”,張老師為了選拔本班學生參加,對本班全體學生詩詞的掌握情況進行了調查,并將調查結果分為了三類:A:好,B:中,C:差.請根據(jù)圖中信息,解答下列問題:(1)全班學生共有人;(2)扇形統(tǒng)計圖中,B類占的百分比為%,C類占的百分比為%;(3)將上面的條形統(tǒng)計圖補充完整;(4)小明被選中參加了比賽.比賽中有一道必答題是:從下表所示的九宮格中選取七個字組成一句詩,其答案為“便引詩情到碧霄”.小明回答該問題時,對第四個字是選“情”還是選“青”,第七個字是選“霄”還是選“宵”,都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小明回答正確的概率.情到碧霄詩青引宵便23.(8分)如圖,在直角坐標系xOy中,直線與雙曲線相交于A(-1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.(1)求m、n的值;(2)求直線AC的解析式.24.(8分)已知⊙中,為直徑,、分別切⊙于點、.(1)如圖①,若,求的大??;(2)如圖②,過點作∥,交于點,交⊙于點,若,求的大小.25.(10分)消費者在某火鍋店飯后買單時可以參與一個抽獎游戲,規(guī)則如下:有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉.現(xiàn)將張紙牌洗勻后背面朝上擺放到桌上,然后讓消費者去翻紙牌.(1)現(xiàn)小楊有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎,她從中隨機翻開一張紙牌,小楊獲獎的概率是________.(2)如糶小楊、小月都有翻兩張牌的機會,小楊先翻一張,放回后再翻一張;小月同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們誰獲獎的機會更大些?通過畫樹狀圖或列表法分析說明理由.26.(10分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網(wǎng)格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)軸對稱圖形概念進行解答即可.【詳解】解:A、不是軸對稱圖形,符合題意;B、是軸對稱圖形,不合題意;C、是軸對稱圖形,不合題意;D、是軸對稱圖形,不合題意;故選:A.【點睛】本題考查了軸對稱圖形的概念,判斷軸對稱圖形的關鍵是尋找對稱軸;軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.2、D【分析】直接利用圓周角定理進行判斷.【詳解】解:∵與都是所對的圓周角,∴.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.3、A【分析】依據(jù)一元二次方程的定義判斷即可.【詳解】A.3(x+1)2=2(x+1)是一元二次方程,故A正確;B.+-2=0是分式方程,故B錯誤;C.當a=0時,方程ax2+bx+c=0不是一元二次方程,故C錯誤;D.x2+2x=x2-1,整理得2x=-1是一元一次方程,故D錯誤;故選A.【點睛】此題考查一元二次方程的定義,解題關鍵在于掌握其定義.4、C【分析】先根據(jù)點的坐標求出k值,再利用反比例函數(shù)圖象的性質即可求解.【詳解】解:∵反比例函數(shù)(k≠0)的圖象經(jīng)過點P(2,-3),
∴k=2×(-3)=-6<0,
∴該反比例函數(shù)經(jīng)過第二、四象限.
故選:C.【點睛】本題考查了反比例函數(shù)的性質.反比例函數(shù)(k≠0)的圖象k>0時位于第一、三象限,在每個象限內,y隨x的增大而減??;k<0時位于第二、四象限,在每個象限內,y隨x的增大而增大.5、B【解析】解:∵關于x的一元二次方程有兩個相等的實數(shù)根,∴△=,解得:sinα=,∵α為銳角,∴α=30°.故選B.6、D【解析】第一個月是560,第二個月是560(1+x),第三月是560(1+x)2,所以第一季度總計560+560(1+x)+560(1+x)2=1850,選D.7、B【分析】過C點作CD⊥AB,交AB的延長線于D點,則CD=1,AC=,在直角三角形ACD中即可求得的值.【詳解】過C點作CD⊥AB,交AB的延長線于D點,則CD=1,AC=在直角三角形ACD中故選:B【點睛】本題考查的是網(wǎng)格中的銳角三角函數(shù),關鍵是創(chuàng)造直角三角形,盡可能的把直角三角形的頂點放在格點.8、B【解析】根據(jù)圖表,可得拋物線y=a(x+1)2+2與x軸的交點坐標為(?3,0);將(?3,0)代入y=a(x+1)2+2,可得a(?3+1)2+2=0,解得a=?;所以拋物線的表達式為y=?(x+1)2+2;當y=0時,可得?(x+1)2+2=0,解得x1=1,x2=?3,所以該拋物線在y軸右側部分與x軸交點的坐標是(1,0).故選B.9、D【解析】先根據(jù)三角形中位線的性質得到DE=AB,從而得到相似比,再利用位似的性質得到△DEF∽△ABC,然后根據(jù)相似三角形的面積比是相似比的平方求解即可.【詳解】∵點D,E分別是OA,OB的中點,∴DE=AB,∵△DEF和△ABC是位似圖形,點O是位似中心,∴△DEF∽△ABC,∴=,∴△ABC的面積=2×4=8故選D.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.10、A【分析】連接BO,根據(jù)垂徑定理得出BD,在△BOD中利用勾股定理解出OD,從而得出AD,在△ABD中利用勾股定理解出AB即可.【詳解】連接OB,∵AO⊥BC,AO過O,BC=4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故選:A.【點睛】本題考查圓的垂徑定理及勾股定理的應用,關鍵在于熟練掌握相關的基礎性質.二、填空題(每小題3分,共24分)11、1【分析】根據(jù)扇形面積公式和扇形的弧長公式之間的關系:S扇形,把對應的數(shù)值代入即可求得半徑r的長.【詳解】解:∵S扇形,∴,∴.故答案為1.【點睛】本題考查了扇形面積和弧長公式之間的關系,解此類題目的關鍵是掌握住扇形面積公式和扇形的弧長公式之間的等量關系:S扇形.12、π.【詳解】解:如圖連接OE、OF.∵CD是⊙O的切線,∴OE⊥CD,∴∠OED=90°,∵四邊形ABCD是平行四邊形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的長=.故答案為π.考點:切線的性質;平行四邊形的性質;弧長的計算.13、①②④【分析】由∠EAF=45°,可得∠BAE+∠DAF=45°,故①正確;如圖,把△ADF繞點A順時針旋轉90°得到△ABH,根據(jù)三角形的外角的性質得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故②正確;由旋轉的性質得,BH=DF,AH=AF,∠BAH=∠DAF,由已知條件得到∠EAH=∠EAF=45°,根據(jù)全等三角形的性質得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故④正確;BM、DN、MN存在BM2+DN2=MN2的關系,故③錯誤.【詳解】解:∵∠EAF=45°,∴∠BAE+∠DAF=45°,故①正確;如圖,把△ADF繞點A順時針旋轉90°得到△ABH,
由旋轉的性質得,BH=DF,AH=AF,∠BAH=∠DAF,
∵∠EAF=45°,
∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,
∴∠EAH=∠EAF=45°,
在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),
∴EH=EF,
∴∠AEB=∠AEF,
∴BE+BH=BE+DF=EF,故④正確;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,
∠AEB=90°-∠BAE=90°-(∠HAE-∠BAH)=90°-(45°-∠BAH)=45°+∠BAH,
∴∠ANM=∠AEB,
∴∠AEB=∠AEF=∠ANM;故②正確;BM、DN、MN滿足等式BM2+DN2=MN2,而非BM+DN=MN,故③錯誤.故答案為①②④.【點睛】本題考查了正方形的性質,全等三角形的判定與性質,等腰直角三角形的性質,勾股定理,熟記各性質并利用旋轉變換作輔助線構造成全等三角形是解題的關鍵.14、3【分析】根據(jù)三角形重心的概念直接求解即可.【詳解】如圖,連接OC,∵AB為直徑,∴∠ACB=90,∵點O是直徑AB的中點,重心G在半徑OC,∴.故答案為:3.【點睛】本題考查了三角形重心的概念及性質、直徑所對圓周角為直角、斜邊上的中線等于斜邊的一半,熟記并靈活運用三角形重心的性質是解題的關鍵.15、-1<x<2【分析】根據(jù)方程的解確定拋物線與x軸的交點坐標,即可確定y<0時,x的取值范圍.【詳解】由題意得:二次函數(shù)y=x2+mx+n與x軸的交點坐標為(-1,0),(2,0),∵a=1,開口向上,∴y<0時,x的取值范圍是-1<x<2.【點睛】此題考查二次函數(shù)與一元二次方程的關系,函數(shù)圖象與x軸的交點橫坐標即為一元二次方程的解,掌握兩者的關系是解此題的關鍵.16、-1【分析】根據(jù)根與系數(shù)的關系可得出,,將其代入中即可得出結論.【詳解】∵、是方程的兩個實數(shù)根,∴,,∴.故答案為-1.【點睛】本題考查了根與系數(shù)的關系,牢記“兩根之和等于,兩根之積等于”是解題的關鍵.17、120【分析】設底面圓的半徑為r,側面展開扇形的半徑為R,扇形的圓心角為n度.根據(jù)面積關系可得.【詳解】設底面圓的半徑為r,側面展開扇形的半徑為R,扇形的圓心角為n度.由題意得S底面面積=πr2,l底面周長=2πr,S扇形=3S底面面積=3πr2,l扇形弧長=l底面周長=2πr.由S扇形=l扇形弧長×R=3πr2=×2πr×R,故R=3r.由l扇形弧長=得:2πr=解得n=120°.故答案為:120°.【點睛】考核知識點:圓錐側面積問題.熟記弧長和扇形面積公式是關鍵.18、【分析】先利用配方法提出二次項的系數(shù),再加上一次項系數(shù)的一半的平方來湊完全平方式,再根據(jù)頂點式即可得到頂點的坐標.【詳解】利用完全平方公式得:由此可得頂點坐標為.【點睛】本題考查了用配方法將二次函數(shù)的一般式轉化為頂點式、以及二次函數(shù)頂點坐標,熟練運用配方法是解題關鍵.三、解答題(共66分)19、1+【分析】先化簡分式,然后將x的值代入計算即可.【詳解】解:原式=(x?1)÷,當x=+1時,原式=.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算法則是解題的關鍵.20、(1)y=﹣x2+2x+1;(2)點D(1,4)或(2,1);(1)當點P在x軸上方時,點P(,);當點P在x軸下方時,點(﹣,﹣)【分析】(1)c=1,點B(1,0),將點B的坐標代入拋物線表達式:y=ax2+2x+1,解得a=﹣1即可得出答案;(2)由S△COF:S△CDF=1:2得OF:FD=1:2,由DH∥CO得CO:DM=1:2,求得DM=2,而DM==2,即可求解;(1)分點P在x軸上方、點P在x軸下方兩種情況,分別求解即可.【詳解】(1)∵OB=OC=1,∴點C的坐標為C(0,1),c=1,點B的坐標為B(1,0),將點B的坐標代入拋物線表達式:y=ax2+2x+1,解得:a=﹣1,故拋物線的表達式為:y=﹣x2+2x+1;(2)如圖,過點D作DH⊥x軸于點H,交BC于點M,∵S△COF:S△CDF=1:2,∴OF:FD=1:2,∵DH∥CO,∴CO:DM=OF:FD=1:2,∴DM=CO=2,設直線BC的表達式為:,將C(0,1),B(1,0)代入得,解得:,∴直線BC的表達式為:y=﹣x+1,設點D的坐標為(x,﹣x2+2x+1),則點M(x,﹣x+1),∴DM==2,解得:x=1或2,故點D的坐標為:(1,4)或(2,1);(1)①當點P在x軸上方時,取OG=OE,連接BG,過點B作直線PB交拋物線于點P,交y軸于點M,使∠GBM=∠GBO,則∠OBP=2∠OBE,過點G作GH⊥BM,如圖,∵點E的坐標為(0,),∴OE=,∵∠GBM=∠GBO,GH⊥BM,GO⊥OB,∴GH=GO=OE=,BH=BO=1,設MH=x,則MG=,在△OBM中,OB2+OM2=MB2,即,解得:x=2,故MG==,則OM=MG+GO=+,點M的坐標為(0,4),設直線BM的表達式為:,將點B(1,0)、M(0,4)代入得:,解得:,∴直線BM的表達式為:y=x+4,解方程組解得:x=1(舍去)或,將x=代入y=x+4得y=,故點P的坐標為(,);②當點P在x軸下方時,如圖,過點E作EN⊥BP,直線PB交y軸于點M,∵∠OBP=2∠OBE,∴BE是∠OBP的平分線,∴EN=OE=,BN=OB=1,設MN=x,則ME=,在△OBM中,OB2+OM2=MB2,即,解得:,∴,則OM=ME+EO=+,點M的坐標為(0,-4),設直線BM的表達式為:,將點B(1,0)、M(0,-4)代入得:,解得:,∴直線BM的表達式為:,解方程組解得:x=1(舍去)或,將x=代入得,故點P的坐標為(,);綜上,點P的坐標為:(,)或(,).【點睛】本題考查的是二次函數(shù)的綜合運用,涉及到一次函數(shù)、平行線分線段成比例定理、勾股定理、角平分線的性質等,其中第(1)問要注意分類求解,避免遺漏.21、(1)52;52+x;180;180-10x;(2)1元;(3)2240元【分析】(1)本題先設第二個月的銷售定價每套增加x元,再分別求出銷售量即可;
(2)本題先設第二個月的銷售定價每套增加x元,根據(jù)題意找出等量關系列出方程,再把解得的x代入即可.(3)根據(jù)利潤的表達式化為二次函數(shù)的頂點式,即可解答本題.【詳解】解:(1)若設第二個月的銷售定價每套增加x元,填寫下表:時間第一個月第二個月銷售定價(元)5252+x銷售量(套)180180-10x故答案為:52;52+x;180;180-10x(2)若設第二個月的銷售定價每套增加x元,根據(jù)題意得:
(52-40)×180+(52+x-40)(180-10x)=411,
解得:x1=-2(舍去),x2=8,
當x=-2時,52+x=50(舍去),
當x=8時,52+x=1.
答:第二個月銷售定價每套應為1元.(3)設第二個月利潤為y元.
由題意得到:y=(52+x-40)(180-10x)
=-10x2+1x+211
=-10(x-3)2+2250∵-10<0
∴當4≤x≤6時,y隨x的增大而減小,∴當x=4時,y取最大值,此時y=2240,
∴52+x=52+4=56,
即要使第二個月利潤達到最大,應定價為56元,此時第二個月的最大利潤是2240元.【點睛】本題考查了二次函數(shù)的應用,解題的關鍵是明確題意,列出相應的關系式,找出所求問題需要的條件.22、(1)40;(2)60,15;(3)補全條形統(tǒng)計圖見解析;(4)小明回答正確的概率是.【分析】(1)根據(jù)統(tǒng)計圖可知,10人占全班人數(shù)的,據(jù)此求解;(2)根據(jù)(1)中所求,容易得C類占的百分比,用1減去兩類的百分比即可求得類百分比;(3)根據(jù)題意,畫出樹狀圖,根據(jù)概率公式即可求得.【詳解】(1)全班學生總人數(shù)為10÷25%=40(人);故答案為:40;(2)B類占的百分比為:×100%=60%;C類占的百分比為1﹣25%﹣60%=15%;故答案為:60,15;(3)C類的人數(shù)40×15%=6(人),補全圖形如下:(4)根據(jù)題意畫圖如下:由樹狀圖可知共有4種可能結果,其中正確的有1種,所以小明回答正確的概率是.【點睛】本題考查統(tǒng)計圖表的中數(shù)據(jù)的計算,以及樹狀圖的繪制,涉及利用概率公式求隨機事件的概率,屬綜合基礎題.23、(1)m=-1,n=-1;(2)y=-x+【分析】(1)由直線與雙曲線相交于A(-1,a)、B兩點可得B點橫坐標為1,點C的坐標為(1,0),再根據(jù)△AOC的面積為1可求得點A的坐標,從而求得結果;(2)設直線AC的解析式為y=kx+b,由圖象過點A(-1,1)、C(1,0)根據(jù)待定系數(shù)法即可求的結果.【詳解】(1)∵直線與雙曲線相交于A(-1,a)、B兩點,∴B點橫坐標為1,即C(1,0)∵△AOC的面積為1,∴A(-1,1)將A(-1,1)代入,可得m=-1,n=-1;(2)設直線AC的解析式為y=kx+b∵y=kx+b經(jīng)過點A(-1,1)、C(1,0)∴解得k=-,b=.∴直線AC的解析式為y=-x+.【點睛】本題考查了一次函數(shù)與反比例函數(shù)圖象的交點問題,此類問題是初中數(shù)學的重點,在中考中極為常見,熟練掌握待定系數(shù)法是解題關鍵.24、(1);(2)【分析】(1)根據(jù)切線性質求出∠OBM=∠OAM=90°,根據(jù)圓周角定理求出∠COB,求出∠BOA,即可求出答案;
(2)連接AB、AD,得出平行四邊形,推出MB=AD,推出AB=AD,求出等邊三角形AMB,即可得出答案.【詳解】(1)連接OB,
∵MA、MB分別切⊙O于A.
B,
∴∠OBM=∠OAM=90°,
∵弧BC對的圓周角是∠BAC,圓心角是∠BOC,∠BAC=25°,
∴∠BOC=2∠BAC=50°,
∴∠BOA=180°?50°=130°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 系統(tǒng)分析師考試備考心得分享試題及答案
- 統(tǒng)計學常用方法匯編試題及答案
- 六年級品德與社會上冊 第一單元 我們健康成長教學設計 北師大版
- 2023二年級數(shù)學下冊 五 加與減練習三教學設計 北師大版
- Unit 9 What's your hobby Part A(教學設計)-2024-2025學年湘少版(三起)英語五年級上冊
- 認識自我之人生水晶球 心理教學設計
- 完整解析2024年記者證考試知識體系
- 專題復習:2024年珠寶鑒定師考試試題及答案
- 2024年視覺傳播設計的創(chuàng)新試題及答案
- 人教版生物八年級下冊7.2.4人的性別遺傳教學設計
- 2025年武漢鐵路橋梁職業(yè)學院單招綜合素質考試題庫必考題
- 2025年第六屆(中小學組)國家版圖知識競賽測試題庫及答案
- 風電場工作安全培訓
- 壓縮機課程設計(共28頁)
- 某煤礦萬噸礦井初步設計設計
- 四方公司機組扭振監(jiān)測、控制和保護新技術---1105 17
- 康復治療技術士知識點
- 不隨行父母同意函(父母雙方不隨行)
- 案例——溫泉度假村ppt課件
- 公路工程技術交底大全內容
- SLT804-2020 淤地壩技術規(guī)范_(高清-有效)
評論
0/150
提交評論