江蘇銅山縣2025屆九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
江蘇銅山縣2025屆九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
江蘇銅山縣2025屆九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
江蘇銅山縣2025屆九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
江蘇銅山縣2025屆九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇銅山縣2025屆九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.邊長分別為6,8,10的三角形的內(nèi)切圓半徑與外接圓半徑的比為()A.1:5 B.4:5 C.2:10 D.2:52.若反比例函數(shù)的圖象過點A(5,3),則下面各點也在該反比例函數(shù)圖象上的是()A.(5,-3) B.(-5,3) C.(2,6) D.(3,5)3.己知點都在反比例函數(shù)的圖象上,則()A. B. C. D.4.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大5.程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.對書中某一問題改編如下:意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個正好分完,大和尚共分得()個饅頭A.25 B.72 C.75 D.906.一個布袋里裝有2個紅球,3個黑球,4個白球,它們除顏色外都相同,從中任意摸出1個球,則下事件中,發(fā)生的可能性最大的是()A.摸出的是白球 B.摸出的是黑球C.摸出的是紅球 D.摸出的是綠球7.在Rt△ABC中,∠C=90°,sinA=,則∠A的度數(shù)是()A.30° B.45° C.60° D.90°8.圓的面積公式S=πR2中,S與R之間的關(guān)系是()A.S是R的正比例函數(shù) B.S是R的一次函數(shù)C.S是R的二次函數(shù) D.以上答案都不對9.圖①是由五個完全相同的小正方體組成的立體圖形.將圖①中的一個小正方體改變位置后如圖②,則三視圖發(fā)生改變的是()A.主視圖 B.俯視圖C.左視圖 D.主視圖、俯視圖和左視圖都改變10.若|a+3|+|b﹣2|=0,則ab的值為()A.﹣6B.﹣9C.9D.6二、填空題(每小題3分,共24分)11.將拋物線y=x2+x向下平移2個單位,所得拋物線的表達式是.12.下面是“用三角板畫圓的切線”的畫圖過程.如圖1,已知圓上一點A,畫過A點的圓的切線.畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經(jīng)過點A,另一條直角邊與圓交于B點,連接AB;(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經(jīng)過點B,畫出另一條直角邊所在的直線AD.所以直線AD就是過點A的圓的切線.請回答:該畫圖的依據(jù)是______________________________________.13.如圖,在等邊△ABC中,AB=8cm,D為BC中點.將△ABD繞點A.逆時針旋轉(zhuǎn)得到△ACE,則△ADE的周長為_________cm.14.在這三個數(shù)中,任選兩個數(shù)的積作為的值,使反例函數(shù)的圖象在第二、四象限的概率是______.15.使函數(shù)有意義的自變量的取值范圍是___________.16.二次函數(shù)(a<0)圖象與x軸的交點A、B的橫坐標分別為﹣3,1,與y軸交于點C,下面四個結(jié)論:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點,則y1>y2;③a=﹣c;④若△ABC是等腰三角形,則b=﹣.其中正確的有______(請將結(jié)論正確的序號全部填上)17.已知二次函數(shù)y=ax1+bx+c(a>0)圖象的對稱軸為直線x=1,且經(jīng)過點(﹣1,y1),(1,y1),則y1_____y1.(填“>”“<”或“=”)18.計算:|﹣3|﹣sin30°=_____.三、解答題(共66分)19.(10分)如圖,在正方形ABCD中,M、N分別是射線CB和射線DC上的動點,且始終∠MAN=45°.(1)如圖1,當點M、N分別在線段BC、DC上時,請直接寫出線段BM、MN、DN之間的數(shù)量關(guān)系;(2)如圖2,當點M、N分別在CB、DC的延長線上時,(1)中的結(jié)論是否仍然成立,若成立,給予證明,若不成立,寫出正確的結(jié)論,并證明;(3)如圖3,當點M、N分別在CB、DC的延長線上時,若CN=CD=6,設(shè)BD與AM的延長線交于點P,交AN于Q,直接寫出AQ、AP的長.20.(6分)在平面直角坐標系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(點A在點B的左側(cè)),與x軸負半軸交于點C.(1)填空:該拋物線的“衍生直線”的解析式為,點A的坐標為,點B的坐標為;(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“衍生三角形”,求點N的坐標;(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“衍生直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.21.(6分)某學(xué)校為了了解名初中畢業(yè)生體育考試成績的情況(滿分分,得分為整數(shù)),從中隨機抽取了部分學(xué)生的體育考試成績,制成如下圖所示的頻數(shù)分布直方圖.已知成績在這一組的頻率為.請回答下列問題:(1)在這個調(diào)查中,樣本容量是______________;平均成績是_________________;(2)請補全成績在這一組的頻數(shù)分布直方圖;(3)若經(jīng)過兩年的練習,該校的體育平均成績提高到了分,求該校學(xué)生體育成績的年平均增長率.22.(8分)如圖,某小區(qū)規(guī)劃在一個長16m,寬9m的矩形場地ABCD上,修建同樣寬的小路,使其中兩條與AB平行,另一條與AD平行,其余部分種草,若草坪部分總面積為112m2,求小路的寬.23.(8分)課堂上同學(xué)們借助兩個直角三角形紙板進行探究,直角三角形紙板如圖所示,分別為Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.當邊AC與DE重合,且邊AB和DF在同一條直線上時:(1)在下邊的圖形中,畫出所有符合題意的圖形;(2)求BF的長.24.(8分)如圖,已知矩形ABCD.在線段AD上作一點P,使∠DPC=∠BPC.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)25.(10分)如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長PD交圓的切線BE于點E(1)判斷直線PD是否為⊙O的切線,并說明理由;(2)如果∠BED=60°,PD=,求PA的長;(3)將線段PD以直線AD為對稱軸作對稱線段DF,點F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.26.(10分)某汽車銷售商推出分期付款購車促銷活動,交首付款后,余額要在30個月內(nèi)結(jié)清,不計算利息,王先生在活動期間購買了價格為12萬元的汽車,交了首付款后平均每月付款萬元,個月結(jié)清.與的函數(shù)關(guān)系如圖所示,根據(jù)圖像回答下列問題:(1)確定與的函數(shù)解析式,并求出首付款的數(shù)目;(2)王先生若用20個月結(jié)清,平均每月應(yīng)付多少萬元?(3)如果打算每月付款不超過4000元,王先生至少要幾個月才能結(jié)清余額?

參考答案一、選擇題(每小題3分,共30分)1、D【分析】由面積法求內(nèi)切圓半徑,通過直角三角形外接圓半徑為斜邊一半可求外接圓半徑,則問題可求.【詳解】解:∵62+82=102,∴此三角形為直角三角形,∵直角三角形外心在斜邊中點上,∴外接圓半徑為5,設(shè)該三角形內(nèi)接圓半徑為r,∴由面積法×6×8=×(6+8+10)r,解得r=2,三角形的內(nèi)切圓半徑與外接圓半徑的比為2:5,故選D.【點睛】本題主要考查了直角三角形內(nèi)切圓和外接圓半徑的有關(guān)性質(zhì)和計算方法,解決本題的關(guān)鍵是要熟練掌握面積計算方法.2、D【解析】先利用待定系數(shù)法求出反比例函數(shù)的解析式,然后將各選項的點代入驗證即可.【詳解】將點代入得:,解得則反比例函數(shù)為:A、令,代入得,此項不符題意B、令,代入得,此項不符題意C、令,代入得,此項不符題意D、令,代入得,此項符合題意故選:D.【點睛】本題考查了待定系數(shù)法求函數(shù)解析式、以及確定某點是否在函數(shù)上,依據(jù)題意求出反比例函數(shù)解析式是解題關(guān)鍵.3、D【解析】試題解析:∵點A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函數(shù)y=的圖象上,∴y1=-;y1=-1;y3=,

∵>->-1,

∴y3>y1>y1.

故選D.4、A【解析】分析:根據(jù)平均數(shù)的計算公式進行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選A.點睛:本題考查了平均數(shù)與方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.5、C【分析】設(shè)有x個大和尚,則有(100-x)個小和尚,根據(jù)饅頭數(shù)=3×大和尚人數(shù)+×小和尚人數(shù)結(jié)合共分100個饅頭,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;【詳解】解:設(shè)有x個大和尚,則有(100?x)個小和尚,依題意,得:3x+(100?x)=100,解得:x=25,∴3x=75;故選:C.【點睛】本題主要考查了一元一次方程的應(yīng)用,掌握一元一次方程的應(yīng)用是解題的關(guān)鍵.6、A【分析】個數(shù)最多的就是可能性最大的.【詳解】解:因為白球最多,所以被摸到的可能性最大.故選A.【點睛】本題主要考查可能性大小的比較:只要總情況數(shù)目相同,誰包含的情況數(shù)目多,誰的可能性就大;反之也成立;若包含的情況相當,那么它們的可能性就相等.7、C【解析】試題分析:根據(jù)特殊角的三角函數(shù)值可得:∠A=60°.8、C【解析】根據(jù)二次函數(shù)的定義,易得S是R的二次函數(shù),故選C.9、A【分析】根據(jù)從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上邊看得到的圖形是俯視圖對兩個組合體進行判斷,可得答案.【詳解】解:①的主視圖是第一層三個小正方形,第二層中間一個小正方形;左視圖是第一層兩個小正方形,第二層左邊一個小正方形;俯視圖是第一層中間一個小正方形,第二層三個小正方形;②的主視圖是第一層三個小正方形,第二層左邊一個小正方形;左視圖是第一層兩個小正方形,第二層左邊一個小正方形;俯視圖是第一層中間一個小正方形,第二層三個小正方形;所以將圖①中的一個小正方體改變位置后,俯視圖和左視圖均沒有發(fā)生改變,只有主視圖發(fā)生改變,故選:A.【點睛】本題考查了三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.10、C【解析】根據(jù)非負數(shù)的性質(zhì)可得a+3=1,b﹣2=1,解得a=﹣3,b=2,所以ab=(﹣3)2=9,故選C.點睛:本題考查了非負數(shù)的性質(zhì):幾個非負數(shù)的和為1時,這幾個非負數(shù)都為1.二、填空題(每小題3分,共24分)11、y=x1+x﹣1.【解析】根據(jù)平移變化的規(guī)律,左右平移只改變點的橫坐標,左減右加.上下平移只改變點的縱坐標,下減上加.因此,將拋物線y=x1+x向下平移1個單位,所得拋物線的表達式是y=x1+x﹣1.12、90°的圓周角所對的弦是直徑,經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線【詳解】解:利用90°的圓周角所對的弦是直徑可得到AB為直徑,根據(jù)經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線可判斷直線AD就是過點A的圓的切線.故答案為90°的圓周角所對的弦是直徑,經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.點睛:本題考查了復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.13、12【分析】由旋轉(zhuǎn)可知,由全等的性質(zhì)及等邊三角形的性質(zhì)可知是等邊三角形,利用勾股定理求出AD長,可得△ADE的周長.【詳解】解:△ABC是等邊三角形,D為BC中點,AB=8在中,根據(jù)勾股定理得由旋轉(zhuǎn)可知是等邊三角形所以△ADE的周長為cm.故答案為:【點睛】本題主要考查了等邊三角形的判定和性質(zhì),靈活利用等邊三角形的性質(zhì)是解題的關(guān)鍵.14、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果,并求出k為負值的情況數(shù),再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:,∵共有6種等可能的結(jié)果,任選兩個數(shù)的積作為k的值,k為負數(shù)的有4種,∴反比例函數(shù)的圖象在第二、四象限的概率是:.

故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.15、且【分析】根據(jù)二次根式的性質(zhì)和分式的性質(zhì)即可得.【詳解】由二次根式的性質(zhì)和分式的性質(zhì)得解得故答案為:且.【點睛】本題考查了二次根式的性質(zhì)、分式的性質(zhì),二次根式的被開方數(shù)為非負數(shù)、分式的分母不能為零是??贾R點,需重點掌握.16、①③.【解析】解:①∵a<0,∴拋物線開口向下,∵圖象與x軸的交點A、B的橫坐標分別為﹣3,1,∴當x=﹣4時,y<0,即16a﹣4b+c<0;故①正確;②∵圖象與x軸的交點A、B的橫坐標分別為﹣3,1,∴拋物線的對稱軸是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由對稱性得:(﹣4.5,y3)與Q(,y2)是對稱點,∴則y1<y2;故②不正確;③∵=﹣1,∴b=2a,當x=1時,y=0,即a+b+c=0,3a+c=0,a=﹣c;④要使△ACB為等腰三角形,則必須保證AB=BC=4或AB=AC=4或AC=BC,當AB=BC=4時,∵AO=1,△BOC為直角三角形,又∵OC的長即為|c|,∴c2=16﹣9=7,∵由拋物線與y軸的交點在y軸的正半軸上,∴c=,與b=2a、a+b+c=0聯(lián)立組成解方程組,解得b=﹣;同理當AB=AC=4時,∵AO=1,△AOC為直角三角形,又∵OC的長即為|c|,∴c2=16﹣1=15,∵由拋物線與y軸的交點在y軸的正半軸上,∴c=,與b=2a、a+b+c=0聯(lián)立組成解方程組,解得b=﹣;同理當AC=BC時,在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程無實數(shù)解.經(jīng)解方程組可知有兩個b值滿足條件.故⑤錯誤.綜上所述,正確的結(jié)論是①③.故答案為①③.點睛:本題考查了等腰三角形的判定、方程組的解、拋物線與坐標軸的交點、二次函數(shù)的圖象與系數(shù)的關(guān)系:當a<0,拋物線開口向下;拋物線的對稱軸為直線x=;拋物線與y軸的交點坐標為(0,c),與x軸的交點為(x1,0)、(x2,0).17、>【分析】根據(jù)二次函數(shù)y=ax1+bx+c(a>0)圖象的對稱軸為直線x=1,且經(jīng)過點(﹣1,y1),(1,y1)和二次函數(shù)的性質(zhì)可以判斷y1和y1的大小關(guān)系.【詳解】解:∵二次函數(shù)y=ax1+bx+c(a>0)圖象的對稱軸為直線x=1,∴當x>1時,y隨x的增大而增大,當x<1時,y隨x的增大而減小,∵該函數(shù)經(jīng)過點(﹣1,y1),(1,y1),|﹣1﹣1|=1,|1﹣1|=1,∴y1>y1,故答案為:>.【點睛】本題考查了二次函數(shù)的增減性問題,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.18、【分析】利用絕對值的性質(zhì)和特殊角的三角函數(shù)值計算即可.【詳解】原式=.故答案為:.【點睛】本題主要考查絕對值的性質(zhì)及特殊角的三角函數(shù)值,掌握絕對值的性質(zhì)及特殊角的三角函數(shù)值是解題的關(guān)鍵.三、解答題(共66分)19、(1)BM+DN=MN;(2)(1)中的結(jié)論不成立,DN﹣BM=MN.理由見解析;(3)AP=AM+PM=3.【分析】(1)在MB的延長線上,截取BE=DN,連接AE,則可證明△ABE≌△ADN,得到AE=AN,進一步證明△AEM≌△ANM,得出ME=MN,得出BM+DN=MN;

(2)在DC上截取DF=BM,連接AF,可先證明△ABM≌△ADF,得出AM=AF,進一步證明△MAN≌△FAN,可得到MN=NF,從而可得到DN-BM=MN;

(3)由已知得出DN=12,由勾股定理得出AN===6,由平行線得出△ABQ∽△NDQ,得出====,∴=,求出AQ=2;由(2)得出DN-BM=MN.設(shè)BM=x,則MN=12-x,CM=6+x,在Rt△CMN中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM==,由平行線得出△PBM∽△PDA,得出==,,求出PM=PM=AM=,得出AP=AM+PM=3.【詳解】(1)BM+DN=MN,理由如下:如圖1,在MB的延長線上,截取BE=DN,連接AE,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案為:BM+DN=MN;(2)(1)中的結(jié)論不成立,DN﹣BM=MN.理由如下:如圖2,在DC上截取DF=BM,連接AF,則∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠FAN=45°,在△MAN和△FAN中,,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四邊形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.設(shè)BM=x,則MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.【點睛】本題是四邊形的綜合題目,考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)等知識;本題綜合性強,證明三角形全等和三角形相似是解題的關(guān)鍵.20、(1);(-2,);(1,0);(2)N點的坐標為(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(xiàn)(-4,)【分析】(1)由拋物線的“衍生直線”知道二次函數(shù)解析式的a即可;(2)過A作AD⊥y軸于點D,則可知AN=AC,結(jié)合A點坐標,則可求出ON的長,可求出N點的坐標;(3)分別討論當AC為平行四邊形的邊時,當AC為平行四邊形的對角線時,求出滿足條件的E、F坐標即可【詳解】(1)∵,a=,則拋物線的“衍生直線”的解析式為;聯(lián)立兩解析式求交點,解得或,∴A(-2,),B(1,0);(2)如圖1,過A作AD⊥y軸于點D,在中,令y=0可求得x=-3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性質(zhì)可知AN=AC=,∵△AMN為該拋物線的“衍生三角形”,∴N在y軸上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N點的坐標為(0,),(0,);(3)①當AC為平行四邊形的邊時,如圖2,過F作對稱軸的垂線FH,過A作AK⊥x軸于點K,則有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH,∴FH=CK=1,HE=AK=,∵拋物線的對稱軸為x=-1,∴F點的橫坐標為0或-2,∵點F在直線AB上,∴當F點的橫坐標為0時,則F(0,),此時點E在直線AB下方,∴E到y(tǒng)軸的距離為EH-OF=-=,即E的縱坐標為-,∴E(-1,-);當F點的橫坐標為-2時,則F與A重合,不合題意,舍去;②當AC為平行四邊形的對角線時,∵C(-3,0),且A(-2,),∴線段AC的中點坐標為(-2.5,),設(shè)E(-1,t),F(xiàn)(x,y),則x-1=2×(-2.5),y+t=,∴x=-4,y=-t,-t=-×(-4)+,解得t=,∴E(-1,),F(xiàn)(-4,);綜上可知存在滿足條件的點F,此時E(-1,-)、(0,)或E(-1,),F(xiàn)(-4,)【點睛】本題是對二次函數(shù)的綜合知識考查,熟練掌握二次函數(shù),幾何圖形及輔助線方法是解決本題的關(guān)鍵,屬于壓軸題21、(1),分;(2)見解析;(3).【分析】(1)根據(jù)樣本容量的定義和平均數(shù)的求法答題即可;(2)計算出21.5至24.5這一組的頻數(shù)后,再補全分布直方圖;(3)設(shè)年平均增長率為,列出一元二次方程求解即可.【詳解】(1)樣本容量:;總成績平均成績分(2)∵組別人數(shù)人∴補全頻數(shù)分布直方圖如下:(3)設(shè)年平均增長率為,由題意得解得,(不符合題意,舍去).兩年的年平均增長率為答:該校學(xué)生體育成績的年平均增長率為10%.【點睛】本題考查了讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力,利用統(tǒng)計圖獲取信息時,必需認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題,同時還考查了一元二次方程的應(yīng)用.22、小路的寬為2m.【解析】如果設(shè)小路的寬度為xm,那么整個草坪的長為(2﹣2x)m,寬為(9﹣x)m,根據(jù)題意即可得出方程.【詳解】設(shè)小路的寬度為xm,那么整個草坪的長為(2﹣2x)m,寬為(9﹣x)m.根據(jù)題意得:(2﹣2x)(9﹣x)=222解得:x2=2,x2=2.∵2>9,∴x=2不符合題意,舍去,∴x=2.答:小路的寬為2m.【點睛】本題考查了一元二次方程的應(yīng)用,弄清“整個草坪的長和寬”是解決本題的關(guān)鍵.23、(1)補全圖形見解析;(2)BF=(+2)cm或BF=(-2)cm.【分析】(1)分兩種情況:①△DEF在△ABC外部,②△DEF在△ABC內(nèi)部進行作圖即可;(2)根據(jù)(1)中兩種情況分別求解即可.【詳解】(1)補全圖形如圖:情況Ⅰ:情況Ⅱ:(2)情況Ⅰ:解:∵在Rt△ACF中,∠F=∠ACF=45°∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(+2)cm.情況Ⅱ:解:∵在Rt△ACF中,∠F=∠ACF=45°∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(-2)cm.【點睛】本題主要考查了勾股定理與解直角三角形的綜合運用,熟練掌握相關(guān)概念是解題關(guān)鍵.24、詳見解析【分析】以為圓心,為半徑畫弧,以為直徑畫弧,兩弧交于點,連接并延長交于點,利用全等三角形和角平分線的判定和性質(zhì)可得.【詳解】解:如圖,即為所作圖形:∠DPC=∠BPC.【點睛】本題是作圖—復(fù)雜作圖,作線段垂直平分線,涉及到角平分線的判定和性質(zhì),全等三角形的判定和性質(zhì),難度中等.25、(1)證明見解析;(2)1;(3)證明見解析.【分析】(1)連接OD,由AB是圓O的直徑可得∠ADB=90°,進而求得∠ADO+∠PDA=90°,即可得出直線PD為⊙O的切線;(2)根據(jù)BE是⊙O的切線,則∠EBA=90°,即可求得∠P=30°,再由PD為⊙O的切線,得∠PDO=90°,根據(jù)三角函數(shù)的定義求得OD,由勾股定理得OP,即可得出PA;(3)根據(jù)題意可證得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圓O的直徑,得∠ADB=90°,設(shè)∠PBD=x°,則可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圓內(nèi)接四邊形的性質(zhì)得出x的值,可得出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論