2022-2023學年江蘇省無錫市敔山灣實驗學校九年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第1頁
2022-2023學年江蘇省無錫市敔山灣實驗學校九年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第2頁
2022-2023學年江蘇省無錫市敔山灣實驗學校九年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第3頁
2022-2023學年江蘇省無錫市敔山灣實驗學校九年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第4頁
2022-2023學年江蘇省無錫市敔山灣實驗學校九年級數(shù)學第一學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知一元二次方程x2+kx﹣5=0有一個根為1,k的值為()A.﹣2 B.2 C.﹣4 D.42.如圖,學校的保管室有一架5m長的梯子斜靠在墻上,此時梯子與地面所成的角為45°如果梯子底端O固定不變,頂端靠到對面墻上,此時梯子與地面所成的角為60°,則此保管室的寬度AB為()A.(+1)m B.(+3)m C.()m D.(+1)m3.如圖,轉(zhuǎn)盤的紅、黃、藍、紫四個扇形區(qū)域的圓心角分別記為,,,.自由轉(zhuǎn)動轉(zhuǎn)盤,則下面說法錯誤的是()A.若,則指針落在紅色區(qū)域的概率大于0.25B.若,則指針落在紅色區(qū)域的概率大于0.5C.若,則指針落在紅色或黃色區(qū)域的概率和為0.5D.若,則指針落在紅色或黃色區(qū)域的概率和為0.54.已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關于x的方程ax2+bx+c+2=0無實數(shù)根;③a﹣b+c≥0;④的最小值為1.其中,正確結(jié)論的個數(shù)為()A.1個 B.2個 C.1個 D.4個5.如圖,一只箱子沿著斜面向上運動,箱高AB=1.3cm,當BC=2.6m時,點B離地面的距離BE=1m,則此時點A離地面的距離是()A.2.2m B.2m C.1.8m D.1.6m6.圖中信息是小明和小華射箭的成績,兩人都射了10箭,則射箭成績的方差較大的是()A.小明 B.小華 C.兩人一樣 D.無法確定7.下列圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.8.若圓錐的側(cè)面積等于其底面積的3倍,則該圓錐側(cè)面展開圖所對應扇形圓心角的度數(shù)為()A.60° B.90° C.120° D.180°9.如圖,AB是半圓O的直徑,且AB=4cm,動點P從點O出發(fā),沿OA→→BO的路徑以每秒1cm的速度運動一周.設運動時間為t,s=OP2,則下列圖象能大致刻畫s與t的關系的是()A. B.C. D.10.如圖,△ABC中AB兩個頂點在x軸的上方,點C的坐標是(﹣1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C′,且△A′B′C′與△ABC的位似比為2:1.設點B的對應點B′的橫坐標是a,則點B的橫坐標是()A. B. C. D.11.下列事件中,必然事件是()A.任意擲一枚均勻的硬幣,正面朝上B.從一副撲克牌中,隨意抽出一張是大王C.通常情況下,拋出的籃球會下落D.三角形內(nèi)角和為360°12.二次函數(shù)的圖象是一條拋物線,下列關于該拋物線的說法正確的是()A.拋物線開口向下 B.拋物線與軸有兩個交點C.拋物線的對稱軸是直線=1 D.拋物線經(jīng)過點(2,3)二、填空題(每題4分,共24分)13.已知關于x的方程的一個根為2,則這個方程的另一個根是▲.14.若整數(shù)使關于的二次函數(shù)的圖象在軸的下方,且使關于的分式方程有負整數(shù)解,則所有滿足條件的整數(shù)的和為__________.15.x=1是關于x的一元二次方程x2+mx﹣5=0的一個根,則此方程的另一個根是.16.如圖,在?ABCD中,AB=6,BC=6,∠D=30°,點E是AB邊的中點,點F是BC邊上一動點,將△BEF移沿直線EF折疊,得到△GEF,當FG∥AC時,BF的長為_____.17.拋物線y=3(x+2)2+5的頂點坐標是_____.18.二次函數(shù)的圖象經(jīng)過點(4,﹣3),且當x=3時,有最大值﹣1,則該二次函數(shù)解析式為_____.三、解答題(共78分)19.(8分)如圖,在△ABC中,點D在AB上,∠ACD=∠B,AB=5,AD=3,求AC的長.20.(8分)如圖,中,,以為直徑作,交于點,交的延長線于點,連接,.(1)求證:是的中點;(2)若,求的長.21.(8分)已知關于x的一元二次方程有兩個相等的實數(shù)根,求m的值.22.(10分)如圖,在直角坐標系中,拋物線y=ax2+bx-2與x軸交于點A(-3,0)、B(1,0),與y軸交于點C.(1)求拋物線的函數(shù)表達式.(2)在拋物線上是否存在點D,使得△ABD的面積等于△ABC的面積的倍?若存在,求出點D的坐標;若不存在,請說明理由.(3)若點E是以點C為圓心且1為半徑的圓上的動點,點F是AE的中點,請直接寫出線段OF的最大值和最小值.23.(10分)如圖,的三個頂點在平面直角坐標系中正方形的格點上.(1)求的值;(2)點在反比例函數(shù)的圖象上,求的值,畫出反比例函數(shù)在第一象限內(nèi)的圖象.24.(10分)如圖,,平分,且交于點,平分,且交于點,與相交于點,連接求的度數(shù);求證:四邊形是菱形.25.(12分)如圖,以等腰△ABC的一腰AC為直徑作⊙O,交底邊BC于點D,過點D作腰AB的垂線,垂足為E,交AC的延長線于點F.(1)求證:EF是⊙O的切線;(2)證明:∠CAD=∠CDF;(3)若∠F=30°,AD=,求⊙O的面積.26.用適當?shù)姆椒ń庀铝蟹匠蹋?1)x2-6x+1=0(2)x2-4=2x+4

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)一元二次方程的解的定義,把x=1代入方程得到關于k的一次方程1﹣5+k=0,然后解一次方程即可.【詳解】解:把x=1代入方程得1+k﹣5=0,解得k=1.故選:D.【點睛】本題考查一元二次方程的解.熟記一元二次方程解得定義是解決此題的關鍵.2、A【分析】根據(jù)銳角三角函數(shù)分別求出OB和OA,即可求出AB.【詳解】解:如下圖所示,OD=OC=5m,∠DOB=60°,∠COA=45°,在Rt△OBD中,OB=OD·cos∠DOB=m在Rt△OAC中,OA=OC·cos∠COA=m∴AB=OA+OB=(+1)m故選:A.【點睛】此題考查的是解直角三角形,掌握用銳角三角函數(shù)解直角三角形是解決此題的關鍵.3、C【分析】根據(jù)概率公式計算即可得到結(jié)論.【詳解】解:A、∵α>90°,,故A正確;B、∵α+β+γ+θ=360°,α>β+γ+θ,,故B正確;C、∵α-β=γ-θ,

∴α+θ=β+γ,∵α+β+γ+θ=360°,

∴α+θ=β+γ=180°,∴指針落在紅色或紫色區(qū)域的概率和為0.5,故C錯誤;

D、∵γ+θ=180°,

∴α+β=180°,∴指針落在紅色或黃色區(qū)域的概率和為0.5,故D正確;

故選:C.【點睛】本題考查了概率公式,熟練掌握概率公式是解題的關鍵.4、D【解析】本題考察二次函數(shù)的基本性質(zhì),一元二次方程根的判別式等知識點.【詳解】解:∵,∴拋物線的對稱軸<0,∴該拋物線的對稱軸在軸左側(cè),故①正確;∵拋物線與軸最多有一個交點,∴∴關于的方程中∴關于的方程無實數(shù)根,故②正確;∵拋物線與軸最多有一個交點,∴當時,≥0正確,故③正確;當時,,故④正確.故選D.【點睛】本題的解題關鍵是熟悉函數(shù)的系數(shù)之間的關系,二次函數(shù)和一元二次方程的關系,難點是第四問的證明,要考慮到不等式的轉(zhuǎn)化.5、A【分析】先根據(jù)勾股定理求出CE,再利用相似三角形的判定與性質(zhì)進而求出DF、AF的長即可得出AD的長.【詳解】解:由題意可得:AD∥EB,則∠CFD=∠AFB=∠CBE,△CDF∽△CEB,∵∠ABF=∠CEB=90°,∠AFB=∠CBE,∴△CBE∽△AFB,∴==,∵BC=2.6m,BE=1m,∴EC=2.4(m),即==,解得:FB=,AF=,∵△CDF∽△CEB,∴=,即解得:DF=,故AD=AF+DF=+=2.2(m),答:此時點A離地面的距離為2.2m.故選:A.【點睛】本題考查了勾股定理、相似三角形的判定和性質(zhì),利用勾股定理,正確利用相似三角形的性質(zhì)得出FD的長是解題的關鍵.6、B【分析】根據(jù)圖中的信息找出波動性小的即可.【詳解】解:根據(jù)圖中的信息可知,小明的成績波動性小,則這兩人中成績穩(wěn)定的是小明;

故射箭成績的方差較大的是小華,

故選:B.【點睛】本題考查了方差的意義,方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.7、B【分析】根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;B、既是軸對稱圖形又是中心對稱圖形,故本選項符合題意;C、是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;D、不是軸對稱圖形,是中心對稱圖形,故本選項不合題意.故選:B.【點睛】此題考查的是中心對稱圖形和軸對稱圖形的識別,掌握中心對稱圖形和軸對稱圖形的概念是解決此題的關鍵.8、C【詳解】解:設母線長為R,底面半徑為r,可得底面周長=2πr,底面面積=πr2,側(cè)面面積=lr=πrR,根據(jù)圓錐側(cè)面積恰好等于底面積的3倍可得3πr2=πrR,即R=3r.根據(jù)圓錐的側(cè)面展開圖的弧長等于圓錐的底面周長,設圓心角為n,有,即.可得圓錐側(cè)面展開圖所對應的扇形圓心角度數(shù)n=120°.故選C.考點:有關扇形和圓錐的相關計算9、C【解析】在半徑AO上運動時,s=OP1=t1;在弧BA上運動時,s=OP1=4;在BO上運動時,s=OP1=(4π+4-t)1,s也是t是二次函數(shù);即可得出答案.【詳解】解:利用圖象可得出:當點P在半徑AO上運動時,s=OP1=t1;在弧AB上運動時,s=OP1=4;在OB上運動時,s=OP1=(1π+4-t)1.結(jié)合圖像可知C選項正確故選:C.【點睛】此題考查了動點問題的函數(shù)圖象,能夠結(jié)合圖形正確得出s與時間t之間的函數(shù)關系是解決問題的關鍵.10、D【解析】設點B的橫坐標為x,然后表示出BC、B′C的橫坐標的距離,再根據(jù)位似變換的概念列式計算.【詳解】設點B的橫坐標為x,則B、C間的橫坐標的長度為﹣1﹣x,B′、C間的橫坐標的長度為a+1,∵△ABC放大到原來的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故選:D.【點睛】本題考查了位似變換,坐標與圖形的性質(zhì),根據(jù)位似變換的定義,利用兩點間的橫坐標的距離等于對應邊的比列出方程是解題的關鍵.11、C【分析】根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】任意擲一枚均勻的硬幣,正面朝上是隨機事件;從一副撲克牌中,隨意抽出一張是大王是隨機事件;通常情況下,拋出的籃球會下落是必然事件;三角形內(nèi)角和為360°是不可能事件,故選C.【點睛】本題考查隨機事件.12、B【詳解】A、a=2,則拋物線y=2x2-3的開口向上,所以A選項錯誤;B、當y=0時,2x2-3=0,此方程有兩個不相等的實數(shù)解,即拋物線與x軸有兩個交點,所以B選項正確;C、拋物線的對稱軸為直線x=0,所以C選項錯誤;D、當x=2時,y=2×4-3=5,則拋物線不經(jīng)過點(2,3),所以D選項錯誤,故選B.二、填空題(每題4分,共24分)13、-1.【解析】∵方程的一個根為2,設另一個為a,∴2a=-6,解得:a=-1.14、【分析】根據(jù)二次函數(shù)的圖象在軸的下方得出,,解分式方程得,注意,根據(jù)分式方程有負整數(shù)解求出a,最后結(jié)合a的取值范圍進行求解.【詳解】∵二次函數(shù)的圖象在軸的下方,∴,,解得,,,解得,,∵分式方程有負整數(shù)解,∴,即,∵,∴,∴所有滿足條件的整數(shù)的和為,故答案為:.【點睛】本題考查二次函數(shù)的圖象,解分式方程,分式方程的整數(shù)解,二次函數(shù)的圖象在x軸下方,則開口向下且函數(shù)的最大值小于1,解分式方程時注意分母不為1.15、-5【解析】把代入方程得:,解得:,∴原方程為:,解此方程得:,∴此方程的另一根為:.16、或【分析】由平行四邊形的性質(zhì)得出∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,得出AH=DH,由線段垂直平分線的性質(zhì)得出CA=CD=AB=6,由等腰三角形的性質(zhì)得出∠ACB=∠B=30°,由平行線的性質(zhì)得出∠BFG=∠ACB=30°,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,則∠ENB=∠B=30°,由直角三角形的性質(zhì)得出EM=BE=,BM=NM=EM=,得出BN=2BM=3,再證出FN=EN=3,即可得出結(jié)果;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,則∠ENB=∠B=30°,得出EN∥AC,EM=BE=,BM=NM=EM=,BN=2BM=3,證出FG∥EN,則∠G=∠GEN,證出∠GEN=∠ENB=∠B=∠G=30°,推出∠BEN=120°,得出∠BEG=120°﹣∠GEN=90°,由折疊的性質(zhì)得∠BEF=∠GEF=∠BEG=45°,證出∠NEF=∠NFE,則FN=EN=3,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,則CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵點E是AB邊的中點,∴BE=3,分兩種情況:①作EM⊥BF于M,在BF上截取EN=BE=3,連接EN,如圖1所示:則∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折疊的性質(zhì)得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,連接EN,如圖2所示:則∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折疊的性質(zhì)得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折疊的性質(zhì)得:∠BEF=∠GEF=∠BEG=45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案為:或.【點睛】本題考查了翻折變換的性質(zhì)、平行四邊形的性質(zhì)、直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識;掌握翻折變換的性質(zhì)和等腰三角形的性質(zhì)是解答本題的關鍵.17、(﹣2,5)【分析】已知拋物線的頂點式,可直接寫出頂點坐標.【詳解】解:由y=3(x+2)2+5,根據(jù)頂點式的坐標特點可知,頂點坐標為(﹣2,5).故答案為:(﹣2,5).【點睛】本題考查二次函數(shù)的性質(zhì),熟知二次函數(shù)的頂點式是解題的關鍵,即在y=a(x-h)2+k中,頂點坐標為(h,k),對稱軸為x=h.18、y=﹣2(x﹣3)2﹣1【分析】根據(jù)題意設出函數(shù)的頂點式,代入點(4,﹣3),根據(jù)待定系數(shù)法即可求得.【詳解】∵當x=3時,有最大值﹣1,∴設二次函數(shù)的解析式為y=a(x﹣3)2﹣1,把點(4,﹣3)代入得:﹣3=a(4﹣3)2﹣1,解得a=﹣2,∴y=﹣2(x﹣3)2﹣1.故答案為:y=﹣2(x﹣3)2﹣1.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,熟練掌握待定系數(shù)法是解題的關鍵.三、解答題(共78分)19、【分析】根據(jù)相似三角形的判定和性質(zhì)定理即可得到結(jié)論.【詳解】∵∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC,∴,∵AB=5,AD=3,∴=,∴AC2=15,∴AC=.【點睛】本題主要考查相似三角形的判定和性質(zhì),解題的關鍵在于熟記各種判定方法,難點在于找對應邊.20、(1)詳見解析;(2).【分析】(1)根據(jù)題意得出,再根據(jù)三線合一即可證明;(2)在中,根據(jù)已知可求得,,,再證明,得出,代入數(shù)值即可得出CE.【詳解】(1)證明:是的直徑,,又是中點.(2)解:,,,,,,.,.【點睛】本題考查了相似三角形的判定及性質(zhì),熟練掌握定理是解題的關鍵.21、m1=,m2=.【解析】根據(jù)一元二次方程有兩個相等實數(shù)根得△=0,再表示出含m的一元二次方程,解方程即可.【詳解】解:∵原方程有兩個相等的實數(shù)根,即△=0,△=4-4()=0,整理得:,求根公式法解得:m=,∴m1=,m2=.【點睛】本題考查了含參一元二次方程的求解,屬于簡單題,熟悉求根公式和根的判別式是解題關鍵.22、(1);(2)存在,理由見解析;D(-4,)或(2,);(3)最大值;最小值【分析】(1)將點A、B的坐標代入函數(shù)解析式計算即可得到;(2)點D應在x軸的上方或下方,在下方時通過計算得△ABD的面積是△ABC面積的倍,判斷點D應在x軸的上方,設設D(m,n),根據(jù)面積關系求出m、n的值即可得到點D的坐標;(3)設E(x,y),由點E是以點C為圓心且1為半徑的圓上的動點,用兩點間的距離公式得到點E的坐標為E,再根據(jù)點F是AE中點表示出點F的坐標,再設設F(m,n),再利用m、n、與x的關系得到n=,通過計算整理得出,由此得出F點的軌跡是以為圓心,以為半徑的圓,再計算最大值與最小值即可.【詳解】解:(1)將點A(-3,0)、B(1,0)代入y=ax2+bx-2中,得,解得,∴(2)若D在x軸的下方,當D為拋物線頂點(-1,)時,,△ABD的面積是△ABC面積的倍,,所以D點一定在x軸上方.設D(m,n),△ABD的面積是△ABC面積的倍,n==m=-4或m=2D(-4,)或(2,)(3)設E(x,y),∵點E是以點C為圓心且1為半徑的圓上的動點,∴,∴y=,∴E,∵F是AE的中點,∴F的坐標,設F(m,n),∴m=,n=,∴x=2m+3,∴n=,∴2n+2=,∴(2n+2)2=1-(2m+3)2,∴4(n+1)2+4()2=1,∴,∴F點的軌跡是以為圓心,以為半徑的圓,∴最大值:,最小值:最大值;最小值【點睛】此題是二次函數(shù)的綜合題,考察待定系數(shù)法解函數(shù)關系式,圖像中利用三角形面積求點的坐標,注意應分x軸上下兩種情況,(3)還考查了兩點間的中點坐標的求法,兩點間的距離的確定方法:兩點間的距離的平方=橫坐標差的平方+縱坐標差的平方.23、(1);(2),圖見解析【分析】(1)過點B作BD⊥AC于點D,然后在Rt△ABD中可以求出;(2)將點B代入,可得出k的值,從而得出反比例函數(shù)解析式,進而用描點法畫出函數(shù)圖象即可.【詳解】解:(1)過點B作BD⊥AC于點D,由圖可得,BD=2,AD=4,∴.(2)將點B(1,3)代入,得k=3,∴反比例函數(shù)解析式為.函數(shù)在第一象限內(nèi)取點,描點得,x(x>0)1236y6322連線得函數(shù)圖象如圖:【點睛】本題主要考查正切值的求法,反比例函數(shù)解析式的求法以及反比例函數(shù)圖象的畫法,掌握基本概念和作圖步驟是解題的關鍵.24、(1);(2)見解析.【分析】(1)已知C、BD分別是∠BAD、∠ABC的平分線,根據(jù)角平分線的定義可得∠DAC=∠BAC,∠ABD=∠DBC,又因AE?//?BF,根據(jù)平行線的性質(zhì)可得∠DAB+∠CBA=180°,即可得∠BAC+∠ABD=90°,∠AOD=90°;(2)根據(jù)平行線的性質(zhì)和角平分線的定義易證AB=BC,AB=AD,即可得AD=BC,再由AD?//?BC,根據(jù)一組對邊平行且相等的四邊形為平行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論