




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,,若,則實數(shù)()A. B. C. D.2.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,3.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點所在區(qū)間為()A. B. C. D.4.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.5.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.16.已知函數(shù),,的零點分別為,,,則()A. B.C. D.7.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.8.已知,,則等于().A. B. C. D.9.已知函數(shù),若,則的值等于()A. B. C. D.10.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.11.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重比為58.79kg12.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過直線上一動點向圓引兩條切線MA,MB,切點為A,B,若,則四邊形MACB的最小面積的概率為________.14.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.15.雙曲線的左焦點為,點,點P為雙曲線右支上的動點,且周長的最小值為8,則雙曲線的實軸長為________,離心率為________.16.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點.求證:(1)AM∥平面BDE;(2)AM⊥平面BDF.18.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.19.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.20.(12分)設函數(shù).(1)若函數(shù)在是單調(diào)遞減的函數(shù),求實數(shù)的取值范圍;(2)若,證明:.21.(12分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.22.(10分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算,是一道中檔題.2、B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.3、B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點存在性定理可知,函數(shù)g(x)的零點所在的區(qū)間是(0,1),故選B.4、D【解析】
先求出球心到四個支點所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及球的性質(zhì)的綜合應用,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎題.5、B【解析】
根據(jù)分段函數(shù)表達式,先求得的值,然后結(jié)合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學生的運算能力,分析問題、解決問題的能力.6、C【解析】
轉(zhuǎn)化函數(shù),,的零點為與,,的交點,數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點,考查了學生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.7、D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).8、B【解析】
由已知條件利用誘導公式得,再利用三角函數(shù)的平方關系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結(jié)合解得,所以,故選B.【點睛】本題考查三角函數(shù)的誘導公式、同角三角函數(shù)的平方關系以及三角函數(shù)的符號與位置關系,屬于基礎題.9、B【解析】
由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點睛】函數(shù)奇偶性的運用即得結(jié)果,小記,定義域關于原點對稱時有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)10、A【解析】
由函數(shù)性質(zhì),結(jié)合特殊值驗證,通過排除法求得結(jié)果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關鍵,難度一般.11、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.12、C【解析】
根據(jù),兩邊平方,化簡得,再利用數(shù)量積定義得到求解.【詳解】因為平面向量,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
先求圓的半徑,四邊形的最小面積,轉(zhuǎn)化為的最小值為,求出切線長的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時最小為圓心到直線的距離,此時,因為,所以,所以的概率為.【點睛】本題考查直線與圓的位置關系,及與長度有關的幾何概型,考查了學生分析問題的能力,難度一般.14、【解析】
由,求出長度關系,利用角平分線以及面積關系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.15、22【解析】
設雙曲線的右焦點為,根據(jù)周長為,計算得到答案.【詳解】設雙曲線的右焦點為.周長為:.當共線時等號成立,故,即實軸長為,.故答案為:;.【點睛】本題考查雙曲線周長的最值問題,離心率,實軸長,意在考查學生的計算能力和轉(zhuǎn)化能力.16、【解析】
確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質(zhì)可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】(1)建立如圖所示的空間直角坐標系,設AC∩BD=N,連結(jié)NE.則N,E(0,0,1),A(,,0),M.∴=,=.∴=且NE與AM不共線.∴NE∥AM.∵NE平面BDE,AM平面BDE,∴AM∥平面BDE.(2)由(1)知=,∵D(,0,0),F(xiàn)(,,1),∴=(0,,1),∴·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.18、(1)(2)答案不唯一,見解析【解析】
(1)由題意根據(jù)和差角的三角函數(shù)公式可得,再根據(jù)同角三角函數(shù)基本關系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因為,又已知,所以,因為,所以,于是.所以.(2)在中,由余弦定理得,得解得或,當時,的面積,當時,的面積.【點睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.19、(1),;(2).【解析】
(1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數(shù)方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.【點睛】本題考查曲線的參數(shù)方程、極坐標方程與普通方程之間的相互轉(zhuǎn)換,同時也考查了直線截圓所形成的三角形面積最值的計算,考查計算能力,屬于中等題.20、(1)(2)證明見解析【解析】
(1)求出導函數(shù),由在上恒成立,采用分離參數(shù)法求解;(2)觀察函數(shù),不等式湊配后知,利用時可證結(jié)論.【詳解】(1)因為在上單調(diào)遞減,所以,即在上恒成立因為在上是單調(diào)遞減的,所以,所以(2)因為,所以由(1)知,當時,在上單調(diào)遞減所以即所以.【點睛】本題考查用導數(shù)研究函數(shù)的單調(diào)性,考查用導數(shù)證明不等式.解題關鍵是把不等式與函數(shù)的結(jié)論聯(lián)系起來,利用函數(shù)的特例得出不等式的證明.21、(1);(2)見解析【解析】
(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設軸上存在點,是以為直角頂點的等腰直角三角形,設,,線段的中點為,根據(jù)韋達定理求出點的坐標,再根據(jù),,即可求出的值,可得點的坐標.【詳解】(1)面積的最大值為,則:又,,解得:,橢圓的方程為:(2)假設軸上存在點,是以為直角頂點的等腰直角三角形設,,線段的中點為由,消去可得:,解得:∴,,依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當時,點滿足題意;當時,點滿足題意故軸上存在點,使得是以為直角頂點的等腰直角三角形【點睛】本題考查了橢圓的方程,直線和橢圓的位置關系,斜率公式,考查了運算能力和轉(zhuǎn)化能力,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村垂直養(yǎng)殖合同標準文本
- 辦公裝飾合同標準文本
- 制版供貨合同標準文本
- 100萬借款合同標準文本
- 出售養(yǎng)殖大棚合同范例
- 刮膠合同標準文本
- 勞務人員用工合同標準文本
- 中國機電服務合同標準文本
- 停止合作合同標準文本
- 個人轉(zhuǎn)讓住房合同標準文本
- 2024年云南省煙草專賣局畢業(yè)生招聘考試真題
- 青島市李滄區(qū)教育系統(tǒng)招聘中小學教師筆試真題2024
- 福建省部分地市2025屆高中畢業(yè)班4月診斷性質(zhì)量檢測英語試題(含答案無聽力音頻無聽力原文)
- 私人飛機轉(zhuǎn)讓協(xié)議書
- 急診護理人文關懷成效匯報
- 2024北京中學高二(下)期中數(shù)學試題及答案
- 電力技術(shù)監(jiān)督專責人員上崗資格考試題庫汽輪機技術(shù)監(jiān)督分冊
- 榜樣的力量有一種力量叫榜樣的力量課件
- 攪拌站的施工方案
- 特種設備安全使用操作培訓課件3
- 供應鏈管理師考試的終極試題及答案
評論
0/150
提交評論