2023屆武漢市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁
2023屆武漢市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁
2023屆武漢市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁
2023屆武漢市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁
2023屆武漢市重點中學(xué)高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象大致是()A. B.C. D.2.若,則的虛部是A.3 B. C. D.3.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.34.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對應(yīng)的點到原點的距離為()A. B. C. D.5.若,則“”的一個充分不必要條件是A. B.C.且 D.或6.已知集合,,則()A. B. C. D.7.若實數(shù)滿足不等式組則的最小值等于()A. B. C. D.8.若復(fù)數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.9.設(shè)集合,,則集合A. B. C. D.10.已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元11.設(shè)函數(shù)的定義域為,滿足,且當(dāng)時,.若對任意,都有,則的取值范圍是().A. B. C. D.12.設(shè)等差數(shù)列的前項和為,若,則()A.23 B.25 C.28 D.29二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在三棱錐中,平面,,已知,,則當(dāng)最大時,三棱錐的體積為__________.14.圓心在曲線上的圓中,存在與直線相切且面積為的圓,則當(dāng)取最大值時,該圓的標(biāo)準(zhǔn)方程為______.15.在棱長為的正方體中,是面對角線上兩個不同的動點.以下四個命題:①存在兩點,使;②存在兩點,使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個面上的正投影的面積的和為定值.其中為真命題的是____.16.假設(shè)10公里長跑,甲跑出優(yōu)秀的概率為,乙跑出優(yōu)秀的概率為,丙跑出優(yōu)秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優(yōu)秀的概率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.18.(12分)已知實數(shù)x,y,z滿足,證明:.19.(12分)如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達(dá)點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.20.(12分)在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程(不要求具體過程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.21.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計如下:空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染嚴(yán)重污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經(jīng)濟損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟損失的數(shù)學(xué)期望.22.(10分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)函數(shù)表達(dá)式,把分母設(shè)為新函數(shù),首先計算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)單調(diào)性,對應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),,則的定義域為.,當(dāng),,單增,當(dāng),,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運算,同學(xué)們還可以用特殊值法等方法進(jìn)行判斷.2、B【解析】

因為,所以的虛部是.故選B.3、D【解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結(jié)果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應(yīng)用,考查分析問題解決問題的能力,屬于基礎(chǔ)題.4、B【解析】

利用復(fù)數(shù)的除法運算化簡z,復(fù)數(shù)在復(fù)平面中對應(yīng)的點到原點的距離為利用模長公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對應(yīng)的點到原點的距離為故選:B【點睛】本題考查了復(fù)數(shù)的除法運算,模長公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.5、C【解析】,∴,當(dāng)且僅當(dāng)時取等號.故“且”是“”的充分不必要條件.選C.6、B【解析】

求出集合,利用集合的基本運算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點睛】本題主要考查集合的基本運算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.7、A【解析】

首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值.【詳解】解:作出實數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以.故選:A.【點睛】本題考查了簡單線性規(guī)劃問題,求目標(biāo)函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.8、A【解析】

由得,然后分子分母同時乘以分母的共軛復(fù)數(shù)可得復(fù)數(shù),從而可得的虛部.【詳解】因為,所以,所以復(fù)數(shù)的虛部為.故選A.【點睛】本題考查了復(fù)數(shù)的除法運算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.復(fù)數(shù)除法運算的方法是分子分母同時乘以分母的共軛復(fù)數(shù),轉(zhuǎn)化為乘法運算.9、B【解析】

先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應(yīng)的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.10、D【解析】

用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎(chǔ)題.11、B【解析】

求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當(dāng)時,,,,又,所以至少小于7,此時,令,得,解得或,結(jié)合圖象,故.故選:B.【點睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.12、D【解析】

由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點睛】考查等差數(shù)列的有關(guān)性質(zhì)、運算求解能力和推理論證能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】設(shè),則,,,,當(dāng)且僅當(dāng),即時,等號成立.,故答案為414、【解析】

由題意可得圓的面積求出圓的半徑,由圓心在曲線上,設(shè)圓的圓心坐標(biāo),到直線的距離等于半徑,再由均值不等式可得的最大值時圓心的坐標(biāo),進(jìn)而求出圓的標(biāo)準(zhǔn)方程.【詳解】設(shè)圓的半徑為,由題意可得,所以,由題意設(shè)圓心,由題意可得,由直線與圓相切可得,所以,而,,所以,即,解得,所以的最大值為2,當(dāng)且僅當(dāng)時取等號,可得,所以圓心坐標(biāo)為:,半徑為,所以圓的標(biāo)準(zhǔn)方程為:.故答案為:.【點睛】本題考查直線與圓的位置關(guān)系及均值不等式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意驗正等號成立的條件.15、①③④【解析】

對于①中,當(dāng)點與點重合,與點重合時,可判斷①正確;當(dāng)點點與點重合,與直線所成的角最小為,可判定②不正確;根據(jù)平面將四面體可分成兩個底面均為平面,高之和為的棱錐,可判定③正確;四面體在上下兩個底面和在四個側(cè)面上的投影,均為定值,可判定④正確.【詳解】對于①中,當(dāng)點與點重合,與點重合時,,所以①正確;對于②中,當(dāng)點點與點重合,與直線所成的角最小,此時兩異面直線的夾角為,所以②不正確;對于③中,設(shè)平面兩條對角線交點為,可得平面,平面將四面體可分成兩個底面均為平面,高之和為的棱錐,所以四面體的體積一定是定值,所以③正確;對于④中,四面體在上下兩個底面上的投影是對角線互相垂直且對角線長度均為1的四邊形,其面積為定義,四面體在四個側(cè)面上的投影,均為上底為,下底和高均為1的梯形,其面積為定值,故四面體在該正方體六個面上的正投影的面積的和為定值,所以④正確.故答案為:①③④.【點睛】本題主要考查了以空間幾何體的結(jié)構(gòu)特征為載體的謎題的真假判定及應(yīng)用,其中解答中涉及到棱柱的集合特征,異面直線的關(guān)系和椎體的體積,以及投影的綜合應(yīng)用,著重考查了推理與論證能力,屬于中檔試題.16、【解析】

分跑出優(yōu)秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛好有2人跑出優(yōu)秀有三種情況:其一是只有甲、乙兩人跑出優(yōu)秀的概率為;其二是只有甲、丙兩人跑出優(yōu)秀的概率為;其三是只有乙、丙兩人跑出優(yōu)秀的概率為,三種情況相加得.即剛好有2人跑出優(yōu)秀的概率為.故答案為:【點睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;

(2)運用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點睛】本題考查正弦定理、余弦定理和面積公式的運用,以及三角函數(shù)的恒等變換,考查化簡整理的運算能力,屬于中檔題.18、見解析【解析】

已知條件,需要證明的是,要想利用柯西不等式,需要的值,發(fā)現(xiàn),則可以用柯西不等式.【詳解】,.由柯西不等式得,...【點睛】本題考查柯西不等式的應(yīng)用,屬于基礎(chǔ)題.19、(1)見解析;(2)【解析】

(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數(shù)據(jù)可證得為等邊三角形,又由于是的中點,所以,從而可證得結(jié)論;(2)由于在中,,而平面平面,所以點在平面的投影恰好為的中點,所以如圖建立空間直角坐標(biāo)系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設(shè),因為.所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點,所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,以為坐標(biāo)原點,方向為軸方向,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè)平面的法向量,由得取,則設(shè)直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設(shè)到平面的距離為,由,即,即,可得,設(shè)直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學(xué)生的轉(zhuǎn)化思想和計算能力,屬于中檔題.20、(I)x2=4aya>0,x-y+1=0【解析】

(I)利用所給的極坐標(biāo)方程和參數(shù)方程,直接整理化簡得到直角坐標(biāo)方程和普通方程;(II)聯(lián)立直線的參數(shù)方程和C的直角坐標(biāo)方程,結(jié)合韋達(dá)定理以及等比數(shù)列的性質(zhì)即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數(shù)方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論