小升初數(shù)列形規(guī)律總結(5篇)_第1頁
小升初數(shù)列形規(guī)律總結(5篇)_第2頁
小升初數(shù)列形規(guī)律總結(5篇)_第3頁
小升初數(shù)列形規(guī)律總結(5篇)_第4頁
小升初數(shù)列形規(guī)律總結(5篇)_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

小升初數(shù)列形規(guī)律總結(5篇)數(shù)列知識:數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N*或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。

數(shù)列

①用函數(shù)的觀點認識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。

數(shù)列的一般形式可以寫成

a1,a2,a3,…,an,a(n+1),……

簡記為{an},

項數(shù)有限的數(shù)列為“有窮數(shù)列”(finitesequence),

項數(shù)無限的數(shù)列為“無窮數(shù)列”(infinitesequence)。

數(shù)列的各項都是正數(shù)的為正項數(shù)列;

從第2項起,每一項都大于它的前一項的數(shù)列叫做遞增數(shù)列;如:1,2,3,4,5,6,7;

從第2項起,每一項都小于它的前一項的數(shù)列叫做遞減數(shù)列;如:8,7,6,5,4,3,2,1;

從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列叫做擺動數(shù)列;

各項呈周期性變化的數(shù)列叫做周期數(shù)列(如三角函數(shù));

各項相等的數(shù)列叫做常數(shù)列(如:2,2,2,2,2,2,2,2,2)。

通項公式:數(shù)列的第N項an與項的序數(shù)n之間的關系可以用一個公式an=f(n)來表示,這個公式就叫做這個數(shù)列的通項公式(注:通項公式不唯一)。

遞推公式:如果數(shù)列{an}的第n項與它前一項或幾項的關系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的遞推公式。

數(shù)列中項的總數(shù)為數(shù)列的項數(shù)。特別地,數(shù)列可以看成以正整數(shù)集N*(或它的有限子集{1,2,…,n})為定義域的函數(shù)an=f(n)。

如果可以用一個公式來表示,則它的通項公式是a(n)=f(n).

并非所有的數(shù)列都能寫出它的通項公式。例如:π的不同近似值,根據(jù)精確的程度,可形成一個數(shù)列3,,,,…它沒有通項公式。

數(shù)列中的項必須是數(shù),它可以是實數(shù),也可以是復數(shù)。

用符號{an}表示數(shù)列,只不過是“借用”集合的符號,它們之間有本質上的區(qū)別:1.集合中的元素是互異的,而數(shù)列中的項可以是相同的。2.集合中的元素是無序的,而數(shù)列中的項必須按一定順序排列,也就是必須是有序的。

知識拓展:函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。

初中數(shù)學知識點總結:平面直角坐標系

下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。

平面直角坐標系

平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

水平的'數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

三個規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

初中數(shù)學知識點:平面直角坐標系的構成

對于平面直角坐標系的構成內容,下面我們一起來學習哦。

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

初中數(shù)學知識點:點的坐標的性質

下面是對數(shù)學中點的坐標的性質知識學習,同學們認真看看哦。

點的坐標的性質

建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

初中數(shù)學知識點:因式分解的一般步驟

關于數(shù)學中因式分解的一般步驟內容學習,我們做下面的知識講解。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數(shù)范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。

初中數(shù)學知識點:因式分解

下面是對數(shù)學中因式分解內容的知識講解,希望同學們認真學習。

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

因式分解與整式乘法的關系:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意;

①不準丟字母

②不準丟常數(shù)項注意查項數(shù)

③雙重括號化成單括號

④結果按數(shù)單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括號外

⑦括號內同類項合并。

——高考數(shù)列知識點總結(精選一篇)

小升初數(shù)列形規(guī)律總結第2篇

分數(shù)與百分數(shù)的應用

基本概念與性質:

分數(shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。

分數(shù)的性質:分數(shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。

分數(shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。

百分數(shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。

常用方法:

①逆向思維方法:從題目提供條件的反方向(或結果)進行思考。

②對應思維方法:找出題目中具體的量與它所占的率的直接對應關系。

③轉化思維方法:把一類應用題轉化成另一類應用題進行解答。最常見的是轉換成比例和轉換成倍數(shù)關系;把不同的標準(在分數(shù)中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。

④假設思維方法:為了解題的方便,可以把題目中不相等的.量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進行調整,求出最后結果。

⑤量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。

⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關系單一化、量率關系明朗化。

⑦同倍率法:總量和分量之間按照同分率變化的規(guī)律進行處理。

⑧濃度配比法:一般應用于總量和分量都發(fā)生變化的狀況。

小升初數(shù)列形規(guī)律總結第3篇

數(shù)列的相關概念

①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N*或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。

②用函數(shù)的觀點認識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a、列表法;b、圖像法;c、解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。

③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。

等差數(shù)列通項公式

an=a1+(n―1)d

n=1時a1=S1

n≥2時an=Sn―Sn―1

an=kn+b(k,b為常數(shù))推導過程:an=dn+a1―d令d=k,a1―d=b則得到an=kn+b

等差中項

由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。

有關系:A=(a+b)÷2

前n項和

倒序相加法推導前n項和公式:

Sn=a1+a2+a3+?????+an

=a1+(a1+d)+(a1+2d)+??????+[a1+(n―1)d]①

Sn=an+an―1+an―2+??????+a1

=an+(an―d)+(an―2d)+??????+[an―(n―1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+??????+(a1+an)(n個)=n(a1+an)

∴Sn=n(a1+an)÷2

等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:

Sn=n(a1+an)÷2=na1+n(n―1)d÷2

Sn=dn2÷2+n(a1―d÷2)

亦可得

a1=2sn÷n―an=[sn―n(n―1)d÷2]÷n

an=2sn÷n―a1

有趣的是S2n―1=(2n―1)an,S2n+1=(2n+1)an+1

等差數(shù)列性質

一、任意兩項am,an的關系為:

an=am+(n―m)d

它可以看作等差數(shù)列廣義的通項公式。

二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:

a1+an=a2+an―1=a3+an―2=…=ak+an―k+1,k∈N*

三、若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq

四、對任意的k∈N*,有

Sk,S2k―Sk,S3k―S2k,…,Snk―S(n―1)k…成等差數(shù)列。

等比數(shù)列

1、等比中項

如果在a與b中間插入一個數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項。

有關系:

注:兩個非零同號的實數(shù)的等比中項有兩個,它們互為相反數(shù),所以G=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

2、等比數(shù)列通項公式

an=a1*q’(n―1)(其中首項是a1,公比是q)

an=Sn―S(n―1)(n≥2)

前n項和

當q≠1時,等比數(shù)列的前n項和的公式為

Sn=a1(1―q’n)/(1―q)=(a1―a1*q’n)/(1―q)(q≠1)

當q=1時,等比數(shù)列的前n項和的公式為

Sn=na1

3、等比數(shù)列前n項和與通項的關系

an=a1=s1(n=1)

an=sn―s(n―1)(n≥2)

4、等比數(shù)列性質

(1)若m、n、p、q∈N*,且m+n=p+q,則am?an=ap?aq;

(2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

(3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1?an=a2?an―1=a3?an―2=…=ak?an―k+1,k∈{1,2,…,n}

(4)等比中項:q、r、p成等比數(shù)列,則aq?ap=ar,ar則為ap,aq等比中項。

記πn=a1?a2…an,則有π2n―1=(an)2n―1,π2n+1=(an+1)2n+1

另外,一個各項均為正數(shù)的等比數(shù)列各項取同底指數(shù)冪后構成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構”的。

(5)等比數(shù)列前n項之和Sn=a1(1―q’n)/(1―q)

(6)任意兩項am,an的關系為an=am?q’(n―m)

(7)在等比數(shù)列中,首項a1與公比q都不為零。

注意:上述公式中a’n表示a的n次方。

等差數(shù)列

對于一個數(shù)列{an},如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。

那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:

將以上n-1個式子相加,便會接連消去很多相關的項,最終等式左邊余下an,而右邊則余下a1和n-1個d,如此便得到上述通項公式。

此外,數(shù)列前n項的和,其具體推導方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復述。

值得說明的是,,也即,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數(shù)列,利用這一特點可以使很多涉及Sn的數(shù)列問題迎刃而解。

等比數(shù)列

對于一個數(shù)列{an},如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。

那么,通項公式為(即a1乘以q的(n-1)次方,其推導為“連乘原理”的思想:

a2=a1*q,

a3=a2*q,

a4=a3*q,

````````

an=an-1*q,

將以上(n-1)項相乘,左右消去相應項后,左邊余下an,右邊余下a1和(n-1)個q的乘積,也即得到了所述通項公式。

此外,當q=1時該數(shù)列的前n項和Tn=a1*n

當q≠1時該數(shù)列前n項的和Tn=a1*(1-q^(n))/(1-q).

數(shù)列求和

等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。

基本概念:

首項:等差數(shù)列的第一個數(shù),一般用a1表示;

項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;

公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;

通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;

數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示.

基本思路:

等差數(shù)列中涉及五個量:a1,an,d,n,sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。

基本公式:通項公式:an=a1+(n-1)d;

通項=首項+(項數(shù)一1)公差;

數(shù)列和公式:sn,=(a1+an)n2;

數(shù)列和=(首項+末項)項數(shù)2;

項數(shù)公式:n=(an+a1)d+1;

項數(shù)=(末項-首項)公差+1;

公差公式:d=(an-a1))(n-1);

公差=(末項-首項)(項數(shù)-1);

關鍵問題:確定已知量和未知量,確定使用的公式;

——數(shù)學必修五數(shù)列知識點提綱通用一篇

小升初數(shù)列形規(guī)律總結第4篇

1.數(shù)列的定義

按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數(shù)列:-1,1,-1,1,….

(4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.

(5)次序對于數(shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數(shù)列的分類

(1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

(2)按照項與項之間的大小關系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

3.數(shù)列的通項公式

數(shù)列是按一定次序排列的一列數(shù),其內涵的本質屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是唯一的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非唯一.如:數(shù)列1,2,3,4,…,

由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據(jù)數(shù)列的構成規(guī)律,多觀察分析,真正找到數(shù)列的內在規(guī)律,由數(shù)列前幾項寫出其通項公式,沒有通用的方法可循.

再強調對于數(shù)列通項公式的理解注意以下幾點:

(1)數(shù)列的通項公式實際上是一個以正整數(shù)集N*或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達式.

(2)如果知道了數(shù)列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數(shù)列的.各項;同時,用數(shù)列的通項公式也可判斷某數(shù)是否是某數(shù)列中的一項,如果是的話,是第幾項.

(3)如所有的函數(shù)關系不一定都有解析式一樣,并不是所有的數(shù)列都有通項公式.

如2的不足近似值,精確到1,,,,1,…所構成的數(shù)列1,,,,2,…就沒有通項公式.

(4)有的數(shù)列的通項公式,形式上不一定是唯一的,正如舉例中的:

(5)有些數(shù)列,只給出它的前幾項,并沒有給出它的構成規(guī)律,那么僅由前面幾項歸納出的數(shù)列通項公式并不唯一.

4.數(shù)列的圖象

對于數(shù)列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:

序號:1234567

項:45678910

這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射.因此,從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整集N*(或它的有限子集{1,2,3,…,n})的函數(shù),當自變量從小到大依次取值時,對應的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

由于數(shù)列的項是函數(shù)值,序號是自變量,數(shù)列的通項公式也就是相應函數(shù)和解析式.

數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的.

數(shù)列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個或有限個孤立的點.

5.遞推數(shù)列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構成一個數(shù)列:4,5,6,7,8,9,10.①

數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1,

——高考數(shù)學等比數(shù)列知識點優(yōu)選【1】篇

小升初數(shù)列形規(guī)律總結第5篇

任意兩項

的關系為

(5)等比中項:

無窮遞縮等比數(shù)列各項和公式:公比的絕對值小于1的無窮等比數(shù)列,當n無限增大時的極限叫做這個無窮等比數(shù)列各項的和。

(7)由等比數(shù)列組成的新的等比數(shù)列的公比:

{an}是公比為q的等比數(shù)列

1.若A=a1+a2+……+an

B=an+1+……+a2n

C=a2n+1+……a3n

則,A、B、C構成新的等比數(shù)列,公比Q=q^n

2.若A=a1+a4+a7+……+a3n-2

B=a2+a5+a8+……+a3n-1

C=a3+a6+a9+……+a3n

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論