2025屆天津市河東區(qū)數(shù)學高一下期末質(zhì)量檢測模擬試題含解析_第1頁
2025屆天津市河東區(qū)數(shù)學高一下期末質(zhì)量檢測模擬試題含解析_第2頁
2025屆天津市河東區(qū)數(shù)學高一下期末質(zhì)量檢測模擬試題含解析_第3頁
2025屆天津市河東區(qū)數(shù)學高一下期末質(zhì)量檢測模擬試題含解析_第4頁
2025屆天津市河東區(qū)數(shù)學高一下期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆天津市河東區(qū)數(shù)學高一下期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若不等式對實數(shù)恒成立,則實數(shù)的取值范圍()A.或 B.C. D.2.已知函數(shù),若存在滿足,且,則n的最小值為()A.3 B.4 C.5 D.63.若實數(shù)x,y滿足條件,目標函數(shù),則z的最大值為()A. B.1 C.2 D.04.經(jīng)過平面α外兩點,作與α平行的平面,則這樣的平面可以作()A.1個或2個B.0個或1個C.1個D.0個5.定義運算,設(shè),若,,,則的值域為()A. B. C. D.6.已知等差數(shù)列的前項和為,若,則()A.18 B.13 C.9 D.77.如圖所示,向量,則()A. B. C. D.8.某城市修建經(jīng)濟適用房.已知甲、乙、丙三個社區(qū)分別有低收入家庭360戶、270戶、180戶,若首批經(jīng)濟適用房中有90套住房用于解決住房緊張問題,采用分層抽樣的方法決定各社區(qū)戶數(shù),則應(yīng)從乙社區(qū)中抽取低收入家庭的戶數(shù)為()A.40 B.36 C.30 D.209.過點且在兩坐標軸上截距相等的直線方程是()A. B.C.或 D.或10.在中,已知是邊上一點,,,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在等差數(shù)列中,,,則.12.已知、的取值如表所示:01342.24.34.86.7從散點圖分析,與線性相關(guān),且,則______.13.若,則______.14.設(shè)a>0,角α的終邊經(jīng)過點P(﹣3a,4a),那么sinα+2cosα的值等于.15.設(shè)是等差數(shù)列的前項和,若,則___________.16.不等式的解集為_________________;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,且(1)求的定義域.(2)判斷的奇偶性,并說明理由.18.某科技創(chuàng)新公司在第一年年初購買了一臺價值昂貴的設(shè)備,該設(shè)備的第1年的維護費支出為20萬元,從第2年到第6年,每年的維修費增加4萬元,從第7年開始,每年維修費為上一年的125%.(1)求第n年該設(shè)備的維修費的表達式;(2)設(shè),若萬元,則該設(shè)備繼續(xù)使用,否則須在第n年對設(shè)備更新,求在第幾年必須對該設(shè)備進行更新?19.某工廠為了對研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):單價元99.29.49.69.810銷量件1009493908578(1)若銷量與單價服從線性相關(guān)關(guān)系,求該回歸方程;(2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問:產(chǎn)品該如何確定單價,可使工廠獲得最大利潤。附:對于一組數(shù)據(jù),,……,其回歸直線的斜率的最小二乘估計值為;本題參考數(shù)值:.20.如圖,某人在離地面高度為的地方,測得電視塔底的俯角為,塔頂?shù)难鼋菫?,求電視塔的?(精確到)21.某校進行學業(yè)水平模擬測試,隨機抽取了名學生的數(shù)學成績(滿分分),繪制頻率分布直方圖,成績不低于分的評定為“優(yōu)秀”.(1)從該校隨機選取一名學生,其數(shù)學成績評定為“優(yōu)秀”的概率;(2)估計該校數(shù)學平均分(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

對m分m≠0和m=0兩種情況討論分析得解.【詳解】由題得時,x<0,與已知不符,所以m≠0.當m≠0時,,所以.綜合得m的取值范圍為.故選C【點睛】本題主要考查一元二次不等式的恒成立問題,意在考查學生對該知識的理解掌握水平和分析推理能力.2、D【解析】

根據(jù)正弦函數(shù)的性質(zhì),對任意(i,j=1,2,3,…,n),都有,因此要使得滿足條件的n最小,則盡量讓更多的取值對應(yīng)的點是最值點,然后再對應(yīng)圖象取值.【詳解】,因為正弦函數(shù)對任意(i,j=1,2,3,…,n),都有,要使n取得最小值,盡可能多讓(i=1,2,3,…,n)取得最高點,因為,所以要使得滿足條件的n最小,如圖所示則需取,,,,,,即取,,,,,,即.故選:D【點睛】本題主要考查正弦函數(shù)的圖象,還考查了數(shù)形結(jié)合的思想方法,屬于中檔題.3、C【解析】

畫出可行域和目標函數(shù),根據(jù)平移得到最大值.【詳解】若實數(shù)x,y滿足條件,目標函數(shù)如圖:當時函數(shù)取最大值為故答案選C【點睛】求線性目標函數(shù)的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最小;當時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.4、B【解析】若平面α外的兩點所確定的直線與平面α平行,則過該直線與平面α平行的平面有且只有一個;若平面α外的兩點所確定的直線與平面α相交,則過該直線的平面與平面α平行的平面不存在;故選B.5、C【解析】

由題意,由于與都是周期函數(shù),且最小正周期都是,故只須在一個周期上考慮函數(shù)的值域即可,分別畫出與的圖象,如圖所示,觀察圖象可得:的值域為,故選C.6、B【解析】

利用等差數(shù)列通項公式、前項和列方程組,求出,.由此能求出.【詳解】解:等差數(shù)列的前項和為,,,,解得,..故選:.【點睛】本題考查等差數(shù)列第7項的值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.7、A【解析】

根據(jù)平面向量的加法的幾何意義、平面向量的基本定理、平面向量數(shù)乘運算的性質(zhì),結(jié)合進行求解即可.【詳解】.故選:A【點睛】本題考查了平面向量基本定理及加法運算的幾何意義,考查了平面向量數(shù)乘運算的性質(zhì),屬于基礎(chǔ)題.8、C【解析】試題分析:利用分層抽樣的比例關(guān)系,設(shè)從乙社區(qū)抽取戶,則,解得.考點:考查分層抽樣.9、C【解析】

設(shè)過點A(4,1)的直線方程為y-1=k(x-4)(k≠0),令x=0,得y=1-4k;令y=0,得x=4-.由已知得1-4k=4-,∴k=-1或k=,∴所求直線方程為x+y-5=0或x-4y=0.故選C.10、A【解析】

利用向量的減法將3,進行分解,然后根據(jù)條件,進行對比即可得到結(jié)論【詳解】∵3,∴33,即43,則,∵λ,∴λ,故選A.【點睛】本題主要考查向量的基本定理的應(yīng)用,根據(jù)向量的減法法則進行分解是解決本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、8【解析】

設(shè)等差數(shù)列的公差為,則,所以,故答案為8.12、【解析】

根據(jù)數(shù)據(jù)表求解出,代入回歸直線,求得的值.【詳解】根據(jù)表中數(shù)據(jù)得:,又由回歸方程知回歸方程的斜率為截距本題正確結(jié)果:【點睛】本題考查利用回歸直線求實際數(shù)據(jù),關(guān)鍵在于明確回歸直線恒過,從而可構(gòu)造出關(guān)于的方程.13、【解析】

,則,故答案為.14、﹣【解析】試題分析:利用任意角三角函數(shù)定義求解.解:∵a>0,角α的終邊經(jīng)過點P(﹣3a,4a),∴x=﹣3a,y=4a,r==5a,∴sinα+2cosα==﹣.故答案為﹣.考點:任意角的三角函數(shù)的定義.15、1.【解析】

由已知結(jié)合等差數(shù)列的性質(zhì)求得,代入等差數(shù)列的前項和得答案.【詳解】解:在等差數(shù)列中,由,得,,則,故答案為:1.【點睛】本題主要考查等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),考查了等差數(shù)列前項和的求法,屬于基礎(chǔ)題.16、【解析】

根據(jù)絕對值定義去掉絕對值符號后再解不等式.【詳解】時,原不等式可化為,,∴;時,原不等式可化為,,∴.綜上原不等式的解為.故答案為.【點睛】本題考查解絕對值不等式,解絕對值不等式的常用方法是根據(jù)絕對值定義去掉絕對值符號,然后求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)偶函數(shù),理由見解析.【解析】

(1)根據(jù)對數(shù)的真數(shù)大于零可求得和的定義域,取交集可得定義域;(2)整理可得,驗證得,得到函數(shù)為偶函數(shù).【詳解】(1)令得:定義域為令得:定義域為的定義域為(2)由題意得:,為定義在上的偶函數(shù)【點睛】本題考查函數(shù)定義域的求解、奇偶性的判斷;求解函數(shù)定義域的關(guān)鍵是明確對數(shù)函數(shù)要求真數(shù)必須大于零,且需保證構(gòu)成函數(shù)的每個部分都有意義.18、(1)(2)第9年【解析】

(1)將數(shù)列分為兩部分,分別利用等差數(shù)列和等比數(shù)列公式得到答案.(2)當時,恒成立,當時,,判斷是遞增數(shù)列,計算,得到答案.【詳解】(1)當時,數(shù)列是首項為20,公差為4的等差數(shù)列,;當時,數(shù)列是首項為,公比為的等比數(shù)列,又所以.因此第n年該設(shè)備的維修費的表達式因此為(2)設(shè)數(shù)列的前項和為,由等差及等比的求和公式得:當時,,此時恒成立,即該設(shè)備繼續(xù)使用;當時,,此時因為,即所以是遞增數(shù)列,又,故在第9年必須對該設(shè)備進行更新.【點睛】本題考查了數(shù)列的應(yīng)用,意在考查學生利用數(shù)列知識解決問題的能力和應(yīng)用能力.19、(1)(2)為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為9.5元.【解析】

(1)先根據(jù)公式求,再根據(jù)求即可求解;(2)先求出利潤的函數(shù)關(guān)系式,再求函數(shù)的最值.【詳解】解:(1)=…又所以故回歸方程為(2)設(shè)該產(chǎn)品的售價為元,工廠利潤為元,當時,利潤,定價不合理。由得,故,,當且僅當,即時,取得最大值.因此,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為9.5元.【點睛】本題考查線性回歸方程和二次函數(shù)的最值.線性回歸方程的計算要根據(jù)已知選擇合適的公式.求二次函數(shù)的最值常用方法:1、根據(jù)函數(shù)單調(diào)性;2、配方法;3、基本不等式,注意等式成立的條件.20、【解析】

過作的垂線,垂足為,再利用直角三角形與正弦定理求解【詳解】解:設(shè)人的位置為,塔底為,塔頂為,過作的垂線,垂足為,則,,,,所以,答:電視塔的高為約.【點睛】本題考查利用正弦定理測量高度,考查基

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論