云南省迪慶州維西縣第二中學2025屆高一下數(shù)學期末質量檢測模擬試題含解析_第1頁
云南省迪慶州維西縣第二中學2025屆高一下數(shù)學期末質量檢測模擬試題含解析_第2頁
云南省迪慶州維西縣第二中學2025屆高一下數(shù)學期末質量檢測模擬試題含解析_第3頁
云南省迪慶州維西縣第二中學2025屆高一下數(shù)學期末質量檢測模擬試題含解析_第4頁
云南省迪慶州維西縣第二中學2025屆高一下數(shù)學期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省迪慶州維西縣第二中學2025屆高一下數(shù)學期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,是兩條不同的直線,,是兩個不同的平面,給出下列四個結論:①,,,則;②若,,,則;③若,,,則;④若,,,則.其中正確結論的序號是A.①③ B.②③ C.①④ D.②④2.在一次隨機試驗中,彼此互斥的事件A,B,C,D的概率分別是0.1,0.2,0.3,0.4,則下列說法正確的是A.A+B與C是互斥事件,也是對立事件 B.B+C與D不是互斥事件,但是對立事件C.A+C與B+D是互斥事件,但不是對立事件 D.B+C+D與A是互斥事件,也是對立事件3.△ABC的內角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.34.在前項和為的等差數(shù)列中,若,則=()A. B. C. D.5.已知向量,,若,則的值為()A. B.1 C. D.6.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點A.向左平行移動個單位長度B.向右平行移動個單位長度C.向左平行移動個單位長度D.向右平行移動個單位長度7.已知一個等比數(shù)列項數(shù)是偶數(shù),其偶數(shù)項之和是奇數(shù)項之和的3倍,則這個數(shù)列的公比為()A.2 B.3 C.4 D.68.若平面向量,滿足,,且,則等于()A. B. C.2 D.89.已知等差數(shù)列的前n項和為,則A.140 B.70 C.154 D.7710.在各項均為正數(shù)的等比數(shù)列中,公比.若,,,數(shù)列的前n項和為,則當取最大值時,n的值為()A.8 B.9 C.8或9 D.17二、填空題:本大題共6小題,每小題5分,共30分。11.在中角所對的邊分別為,若則___________12.如圖,在內有一系列的正方形,它們的邊長依次為,若,,則所有正方形的面積的和為___________.13.若數(shù)列滿足(,為常數(shù)),則稱數(shù)列為“調和數(shù)列”,已知正項數(shù)列為“調和數(shù)列”,且,則的最大值是__________.14.已知,若角的終邊經過點,求的值.15.方程在區(qū)間的解為_______.16.設向量,若,,則.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.交通指數(shù)是指交通擁堵指數(shù)的簡稱,是綜合反映道路網暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個級別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴重擁堵.在晚高峰時段(),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.(1)求出輕度擁堵、中度擁堵、嚴重擁堵的路段的個數(shù);(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴重擁堵的路段中共抽取6個路段,求依次抽取的三個級別路段的個數(shù);(3)從(2)中抽取的6個路段中任取2個,求至少有1個路段為輕度擁堵的概率.18.已知圓經過點,且圓心在直線:上.(1)求圓的方程;(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標;若不存在,請說明理由.19.已知.(1)若三點共線,求實數(shù)的值;(2)證明:對任意實數(shù),恒有成立.20.在公差不為零的等差數(shù)列中,成等比數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,設數(shù)列的前項和,求證.21.如圖,在△ABC中,已知AB=4,AC=6,點E為AB的中點,點D、F在邊BC、AC上,且,,EF交AD于點P.(Ⅰ)若∠BAC=,求與所成角的余弦值;(Ⅱ)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用面面垂直的判定定理判斷①;根據(jù)面面平行的判定定理判斷②;利用線面垂直和線面平行的性質判斷③;利用線面垂直和面面平行的性質判斷④【詳解】①,,或,又,則成立,故正確②若,,或和相交,并不一定平行于,故錯誤③若,,則或,若,則并不一定平行于,故錯誤④若,,,又,成立,故正確綜上所述,正確的命題的序號是①④故選【點睛】本題主要考查了命題的真假判斷和應用,解題的關鍵是理解線面,面面平行與垂直的判斷定理和性質定理,屬于基礎題.2、D【解析】

不可能同時發(fā)生的事件為互斥事件,當兩個互斥事件的概率和為1,則兩個事件為對立事件,易得答案.【詳解】因為事件彼此互斥,所以與是互斥事件,因為,,,所以與是對立事件,故選D.【點睛】本題考查互斥事件、對立事件的概念,注意對立事件一定是互斥事件,而互斥事件不一定是對立事件.3、A【解析】

利用余弦定理推論得出a,b,c關系,在結合正弦定理邊角互換列出方程,解出結果.【詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【點睛】本題考查正弦定理及余弦定理推論的應用.4、C【解析】

利用公式的到答案.【詳解】項和為的等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的前N項和,等差數(shù)列的性質,利用可以簡化計算.5、B【解析】

直接利用向量的數(shù)量積列出方程求解即可.【詳解】向量,,若,可得2﹣2=0,解得=1,故選B.【點睛】本題考查向量的數(shù)量積的應用,考查計算能力,屬于基礎題.6、D【解析】試題分析:由題意,為得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點向右平行移動個單位長度,故選D.【考點】三角函數(shù)圖象的平移【名師點睛】本題考查三角函數(shù)圖象的平移,在函數(shù)的圖象平移變換中要注意“”的影響,變換有兩種順序:一種的圖象向左平移個單位得的圖象,再把橫坐標變?yōu)樵瓉淼谋叮v坐標不變,得的圖象,另一種是把的圖象橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得的圖象,再向左平移個單位得的圖象.7、B【解析】

由數(shù)列為等比數(shù)列,則,結合題意即可得解.【詳解】解:因為數(shù)列為等比數(shù)列,設等比數(shù)列的公比為,則,又是奇數(shù)項之和的3倍,則,故選:B.【點睛】本題考查了等比數(shù)列的性質,重點考查了等比數(shù)列公比的運算,屬基礎題.8、B【解析】

由,可得,再結合,展開可求出答案.【詳解】由,可知,展開可得,所以,又,,所以.故選:B.【點睛】本題考查向量數(shù)量積的應用,考查學生的計算求解能力,注意向量的平方等于模的平方,屬于基礎題.9、D【解析】

利用等差數(shù)列的前n項和公式,及等差數(shù)列的性質,即可求出結果.【詳解】等差數(shù)列的前n項和為,.故選D.【點睛】本題考查等差數(shù)列的前n項和的求法和等差數(shù)列的性質,屬于基礎題.10、C【解析】∵為等比數(shù)列,公比為,且∴∴,則∴∴∴,∴數(shù)列是以4為首項,公差為的等差數(shù)列∴數(shù)列的前項和為令當時,∴當或9時,取最大值.故選C點睛:(1)在解決等差數(shù)列、等比數(shù)列的運算問題時,有兩個處理思路:一是利用基本量將多元問題簡化為一元問題;二是利用等差數(shù)列、等比數(shù)列的性質,性質是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差數(shù)列、等比數(shù)列問題的快捷方便的工具;(2)求等差數(shù)列的前項和最值的兩種方法:①函數(shù)法:利用等差數(shù)列前項和的函數(shù)表達式,通過配方或借助圖象求二次函數(shù)最值的方法求解;②鄰項變號法:當時,滿足的項數(shù)使得取得最大值為;當時,滿足的項數(shù)使得取得最小值為.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】,;由正弦定理,得,解得.考點:正弦定理.12、【解析】

根據(jù)題意可知,可得,依次計算,,不難發(fā)現(xiàn):邊長依次為,,,,構成是公比為的等比數(shù)列,正方形的面積:依次,,不難發(fā)現(xiàn):邊長依次為,,,,正方形的面積構成是公比為的等比數(shù)列.利用無窮等比數(shù)列的和公式可得所有正方形的面積的和.【詳解】根據(jù)題意可知,可得,依次計算,,是公比為的等比數(shù)列,正方形的面積:依次,,邊長依次為,,,,正方形的面積構成是公比為的等比數(shù)列.所有正方形的面積的和.故答案為:【點睛】本題考查了無窮等比數(shù)列的和公式的運用.利用邊長關系建立等式,找到公比是解題的關鍵.屬于中檔題.13、1【解析】因為數(shù)列是“調和數(shù)列”,所以,即數(shù)列是等差數(shù)列,所以,,所以,,當且僅當時等號成立,因此的最大值為1.點睛:本題考查創(chuàng)新意識,關鍵是對新定義的理解與轉化,由“調和數(shù)列”的定義及已知是“調和數(shù)列”,得數(shù)列是等差數(shù)列,從而利用等差數(shù)列的性質可化簡已知數(shù)列的和,結合基本不等式求得最值.本題難度不大,但考查的知識較多,要熟練掌握各方面的知識與方法,才能正確求解.14、【解析】

由條件利用任意角的三角函數(shù)的定義,求得和的值,從而可得的值.【詳解】因為角的終邊經過點,所以,,則.故答案為:【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎題.15、或【解析】

由題意求得,利用反三角函數(shù)求出方程在區(qū)間的解.【詳解】解:,得,,或,;方程在區(qū)間的解為:或.故答案為:或.【點睛】本題考查了三角函數(shù)方程的解法與應用問題,是基礎題.16、【解析】

利用向量垂直數(shù)量積為零列等式可得,從而可得結果.【詳解】因為,且,所以,可得,又因為,所以,故答案為.【點睛】利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)輕度擁堵、中度擁堵、嚴重擁堵的路段的個數(shù)分別為6,9,3;(2)從交通指數(shù)在[4,6),[6,8),[8,10]的路段中分別抽取的個數(shù)為2,3,1;(3)【解析】

(1)根據(jù)在頻率分布直方圖中,小長方形的面積表示各組的頻率,可以求出頻率,再根據(jù)頻數(shù)等于頻率乘以樣本容量,求出頻數(shù);(2)根據(jù)(1)求出擁堵路段的個數(shù),求出每層之間的占有比例,然后求出每層的個數(shù);(3)先求出從(2)中抽取的6個路段中任取2個,有多少種可能情況,然后求出至少有1個路段為輕度擁堵有多少種可能情況,根據(jù)古典概型概率公式求出.【詳解】(1)由頻率分布直方圖得,這20個交通路段中,輕度擁堵的路段有(0.1+0.2)×1×20=6(個),中度擁堵的路段有(0.25+0.2)×1×20=9(個),嚴重擁堵的路段有(0.1+0.05)×1×20=3(個).(2)由(1)知,擁堵路段共有6+9+3=18(個),按分層抽樣,從18個路段抽取6個,則抽取的三個級別路段的個數(shù)分別為,,,即從交通指數(shù)在[4,6),[6,8),[8,10]的路段中分別抽取的個數(shù)為2,3,1.(3)記抽取的2個輕度擁堵路段為,,抽取的3個中度擁堵路段為,,,抽取的1個嚴重擁堵路段為,則從這6個路段中抽取2個路段的所有可能情況為:,共15種,其中至少有1個路段為輕度擁堵的情況為:,共9種.所以所抽取的2個路段中至少有1個路段為輕度擁堵的概率為.【點睛】本題考查了頻率直方圖的應用、分層抽樣、古典概型概率的求法.解決本題的關鍵是對頻率直方圖所表示的意義要了解,分層抽樣的原則要知道,要能識別古典概型.18、(1)(2)在直線上存在定點,使得恒成立,詳見解析【解析】

(1)求出弦中垂線方程,由中垂線和直線相交得圓心坐標,再求出圓半徑,從而得圓標準方程;(2)直線斜率存在時,設方程為,代入圓的方程,得的一元二次方程,同時設交點為由韋達定理得,假設定點存在,設其為,由求得,再驗證所作直線斜率不存在時,點也滿足題意.【詳解】(1)的中點為,∴的垂直平分線的斜率為,∴的垂直平分線的方程為,∴的垂直平分線與直線交點為圓心,則,解得,又.∴圓的方程為.(2)當直線的斜率存在時,設直線的斜率為,則過點的直線方程為,故由,整理得,設,設,則,,,即,當斜率不存在時,成立,∴在直線上存在定點,使得恒成立【點睛】本題考查求圓的標準方程,考查與圓有關的定點問題.求圓的標準方程可先求出圓心坐標和圓的半徑,然后得標準方程,注意圓心一定在弦的中垂線上.定點問題,通常用設而不求思想,即設直線方程與圓方程聯(lián)立消元后得一元二次方程,設直線與圓的交點坐標為,由韋達定理得,然后設定點坐標如本題,再由條件求出,若不能求出說明定點不存在,如能求出值,注意驗證直線斜率不存在時,此定點也滿足題意.19、(1)-3;(2)證明見解析.【解析】分析:(1)由題意可得,結合三點共線的充分必要條件可得.(2)由題意結合平面向量數(shù)量積的坐標運算法則可得,則恒有成立.詳解:(1),∵三點共線,∴,∴.(2),∴,∴恒有成立.點睛:本題主要考查平面向量數(shù)量積的運算法則,二次函數(shù)的性質及其應用等知識,意在考查學生的轉化能力和計算求解能力.20、(Ⅰ)(Ⅱ)見解析【解析】

(Ⅰ)根據(jù)題意列出方程組,利用等差數(shù)列的通項公式化簡求解即可;(Ⅱ)將的通項公式代入所給等式化簡求出的通項公式,利用裂項相消法求出,由推出,由數(shù)列是遞增數(shù)列推出.【詳解】(Ⅰ)設等差數(shù)列的公差為(),因為,所以解得,所以.(Ⅱ),.因為,所以,又因為,所以數(shù)列是遞增數(shù)列,于是.綜上,.【點睛】本題考查等差數(shù)列的基本量的求解,裂項相消法求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論