2023屆廣西賀州市平桂區(qū)高級中學高三數(shù)學第一學期期末綜合測試模擬試題含解析_第1頁
2023屆廣西賀州市平桂區(qū)高級中學高三數(shù)學第一學期期末綜合測試模擬試題含解析_第2頁
2023屆廣西賀州市平桂區(qū)高級中學高三數(shù)學第一學期期末綜合測試模擬試題含解析_第3頁
2023屆廣西賀州市平桂區(qū)高級中學高三數(shù)學第一學期期末綜合測試模擬試題含解析_第4頁
2023屆廣西賀州市平桂區(qū)高級中學高三數(shù)學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,(),則數(shù)列的通項公式()A. B. C. D.2.已知向量,則向量在向量方向上的投影為()A. B. C. D.3.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內,且都垂直于棱,且,則的長為()A.4 B. C.2 D.4.已知復數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.5.已知函數(shù),若函數(shù)的極大值點從小到大依次記為,并記相應的極大值為,則的值為()A. B. C. D.6.已知為虛數(shù)單位,若復數(shù),,則A. B.C. D.7.已知各項都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.8.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.9.已知函數(shù)的圖像上有且僅有四個不同的點關于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.10.已知向量,(其中為實數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知數(shù)列的通項公式為,將這個數(shù)列中的項擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個數(shù)的和,則數(shù)列的前2020項和為()A. B. C. D.12.體育教師指導4個學生訓練轉身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉”,若4個學生全部轉到面朝正北方向,則至少需要“向后轉”的次數(shù)是()A.3 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)的圖像向左平移個單位得到函數(shù)的圖像.則在區(qū)間上的最小值為________.14.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.15.根據(jù)如圖的算法,輸出的結果是_________.16.已知,則展開式的系數(shù)為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.18.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.19.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)求的極坐標方程和的直角坐標方程;(Ⅱ)設分別交于兩點(與原點不重合),求的最小值.20.(12分)已知等比數(shù)列是遞增數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.21.(12分)在中,內角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當?shù)拿娣e取得最大值時,求AD的長.22.(10分)對于給定的正整數(shù)k,若各項均不為0的數(shù)列滿足:對任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.(1)證明:等比數(shù)列是“數(shù)列”;(2)若數(shù)列既是“數(shù)列”又是“數(shù)列”,證明:數(shù)列是等比數(shù)列.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用數(shù)列的遞推關系式,通過累加法求解即可.【詳解】數(shù)列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數(shù)列的遞推關系式的應用,數(shù)列累加法以及通項公式的求法,考查計算能力.2、A【解析】

投影即為,利用數(shù)量積運算即可得到結論.【詳解】設向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點睛】本題主要考察了向量的數(shù)量積運算,難度不大,屬于基礎題.3、A【解析】

由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質、向量垂直與數(shù)量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.4、D【解析】

把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎題.5、C【解析】

對此分段函數(shù)的第一部分進行求導分析可知,當時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應極大值,分組求和即得【詳解】當時,,顯然當時有,,∴經單調性分析知為的第一個極值點又∵時,∴,,,…,均為其極值點∵函數(shù)不能在端點處取得極值∴,,∴對應極值,,∴故選:C【點睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達式中抽離出相應的等差數(shù)列和等比數(shù)列,最后分組求和,要求學生對數(shù)列和函數(shù)的熟悉程度高,為中檔題6、B【解析】

由可得,所以,故選B.7、A【解析】試題分析:設公差為或(舍),故選A.考點:等差數(shù)列及其性質.8、A【解析】

畫出不等式組所表示的平面區(qū)域,結合圖形確定目標函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數(shù),化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數(shù)取得最大值,又由,解得,所以目標函數(shù)的最大值為,故選A.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結合思想,及推理與計算能力,屬于基礎題.9、A【解析】

可將問題轉化,求直線關于直線的對稱直線,再分別討論兩函數(shù)的增減性,結合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結合圖像可知,即,故選:A【點睛】本題考查數(shù)形結合思想求解函數(shù)交點問題,導數(shù)研究函數(shù)增減性,找準臨界是解題的關鍵,屬于中檔題10、A【解析】

結合向量垂直的坐標表示,將兩個條件相互推導,根據(jù)能否推導的情況判斷出充分、必要條件.【詳解】由,則,所以;而當,則,解得或.所以“”是“”的充分不必要條件.故選:A【點睛】本小題考查平面向量的運算,向量垂直,充要條件等基礎知識;考查運算求解能力,推理論證能力,應用意識.11、D【解析】

由題意,設每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設每一行的和為故因此:故故選:D【點睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.12、B【解析】

通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉”第2次“向后轉”第3次“向后轉”第4次“向后轉”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構造較為巧妙,可通過列舉的方法直觀感受,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

注意平移是針對自變量x,所以,再利用整體換元法求值域(最值)即可.【詳解】由已知,,,又,故,,所以的最小值為.故答案為:.【點睛】本題考查正弦型函數(shù)在給定區(qū)間上的最值問題,涉及到圖象的平移變換、輔助角公式的應用,是一道基礎題.14、【解析】

甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.15、55【解析】

根據(jù)該For語句的功能,可得,可得結果【詳解】根據(jù)該For語句的功能,可得則故答案為:55【點睛】本題考查For語句的功能,屬基礎題.16、【解析】

先根據(jù)定積分求出的值,再用二項展開式公式即可求解.【詳解】因為所以的通項公式為當時,當時,故展開式中的系數(shù)為故答案為:【點睛】此題考查定積分公式,二項展開式公式等知識點,屬于簡單題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用余弦定理可得的長;(2)利用面積得出,結合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時一般選用正弦定理,已知邊較多時一般選用余弦定理.18、(1);(2)或.【解析】

(1)聯(lián)立直線方程與雙曲線方程,消去,得到關于的一元二次方程,根據(jù)根的判別式,即可求出結論;(2)設,由(1)可得關系,再由直線l過點,可得,進而建立關于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關系、三角形面積計算,要熟練掌握根與系數(shù)關系解決相交弦問題,考查計算求解能力,屬于中檔題.19、(Ⅰ)直線的極坐標方程為,直線的極坐標方程為,的直角坐標方程為;(Ⅱ)2.【解析】

(Ⅰ)由定義可直接寫出直線的極坐標方程,對曲線同乘可得:,轉化成直角坐標為;(Ⅱ)分別聯(lián)立兩直線和曲線的方程,由得,由得,則,結合三角函數(shù)即可求解;【詳解】(Ⅰ)直線的極坐標方程為,直線的極坐標方程為由曲線的極坐標方程得,所以的直角坐標方程為.(Ⅱ)與的極坐標方程聯(lián)立得所以.與的極坐標方程聯(lián)立得所以.所以.所以當時,取最小值2.【點睛】本題考查參數(shù)方程與極坐標方程的互化,極坐標方程與直角坐標方程的互化,極坐標中的幾何意義,屬于中檔題20、(1)(2)【解析】

(1)先利用等比數(shù)列的性質,可分別求出的值,從而可求出數(shù)列的通項公式;(2)利用錯位相減求和法可求出數(shù)列的前項和.【詳解】解:(1)由是遞增等比數(shù)列,,聯(lián)立,解得或,因為數(shù)列是遞增數(shù)列,所以只有符合題意,則,結合可得,∴數(shù)列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.【點睛】本題考查了等比數(shù)列的性質,考查了等比數(shù)列的通項公式,考查了利用錯位相減法求數(shù)列的前項和.21、(1);(2).【解析】

(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當時,的面積取得最大值,此時,,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,的面積取得最大值,此時.在中,由余弦定理得.即.【點睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學生的計算能力,是一道容易題.22、(1)證明見詳解;(2)證明見詳解【解析】

(1)由是等比數(shù)列,由等比數(shù)列的性質可得:即可證明.(2)既是“數(shù)列”又是“數(shù)列”,可得,,則對于任意都成立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論