2025屆山南市重點中學數(shù)學高一下期末監(jiān)測模擬試題含解析_第1頁
2025屆山南市重點中學數(shù)學高一下期末監(jiān)測模擬試題含解析_第2頁
2025屆山南市重點中學數(shù)學高一下期末監(jiān)測模擬試題含解析_第3頁
2025屆山南市重點中學數(shù)學高一下期末監(jiān)測模擬試題含解析_第4頁
2025屆山南市重點中學數(shù)學高一下期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山南市重點中學數(shù)學高一下期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,若,且,則的形狀為()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形2.已知函數(shù),則有A.的圖像關于直線對稱 B.的圖像關于點對稱C.的最小正周期為 D.在區(qū)間內單調遞減3.要得到函數(shù)的圖像,只需要將函數(shù)的圖像()A.向右平移個長度單位 B.向左平移個長度單位C.向右平移個長度單位 D.向左平移個長度單位4.函數(shù)的定義域是(

)A. B. C. D.5.設且,則下列不等式成立的是()A. B. C. D.6.已知實數(shù)列-1,x,y,z,-2成等比數(shù)列,則xyz等于A.-4 B. C. D.7.已知角的頂點在坐標原點,始邊與x軸正半軸重合,將終邊按逆時針方向旋轉后,終邊經(jīng)過點,則()A. B. C. D.8.數(shù)列的通項公式為,則數(shù)列的前100項和().A. B. C. D.9.“”是“函數(shù)的圖像關于直線對稱”的()條件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要10.在等差數(shù)列中,,則等于()A.5 B.6 C.7 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.的值為___________.12.在上,滿足的的取值范圍是______.13.已知直線:與圓交于,兩點,過,分別作的垂線與軸交于,兩點,若,則__________.14.若直線y=x+m與曲線x=恰有一個公共點,則實數(shù)m的取值范圍是______.15.不等式的解集為______.16.已知,,若,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù),定義域為.(1)求函數(shù)的最小正周期,并求出其單調遞減區(qū)間;(2)求關于的方程的解集.18.已知是等差數(shù)列,為其前項和,且,.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,求數(shù)列的前項和.19.已知:的頂點,,.(1)求AB邊上的中線CD所在直線的方程;(2)求的面積.20.某校準備從高一年級的兩個男生和三個女生中選擇2個人去參加一項比賽.(1)若從這5個學生中任選2個人,求這2個人都是女生的概率;(2)若從男生和女生中各選1個人,求這2個人包括,但不包括的概率.21.已知方程有兩個實根,記,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由兩角和的正切公式求得,從而得,由二倍角公式求得,再求得,注意檢驗符合題意,可判斷三角形形狀.【詳解】,∴,∴,由,即.∴或.當時,,無意義.當時,,此時為正三角形.故選:D.【點睛】本題考查三角形形狀的判斷,考查兩角和的正切公式和二倍角公式,根據(jù)三角公式求出角是解題的基本方法.2、B【解析】

把函數(shù)化簡后再判斷.【詳解】,由正切函數(shù)的性質知,A、C、D都錯誤,只有B正確.【點睛】本題考查二倍角公式和正切函數(shù)的性質.三角函數(shù)的性質問題,一般要把函數(shù)化為一個角的一個三角函數(shù)形式,然后結合相應的三角函數(shù)得出結論.3、D【解析】

根據(jù)的圖像變換規(guī)律求解即可【詳解】設平移量為,則由,滿足:,故由向左平移個長度單位可得到故選:D【點睛】本題考查函數(shù)的圖像變換規(guī)律,屬于基礎題4、B【解析】

根據(jù)函數(shù)f(x)的解析式,列出使解析式有意義的不等式組,求出解集即可.【詳解】∵函數(shù)f(x)=+lg(3x+1),∴;解得﹣<x<1,∴函數(shù)f(x)的定義域是(﹣,1).故選B.【點睛】本題考查了求函數(shù)定義域的應用問題,解題的關鍵是列出使函數(shù)解析式有意義的不等式組,是基礎題目.5、A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.6、C【解析】.7、B【解析】

先建立角和旋轉之后得所到的角之間的聯(lián)系,再根據(jù)誘導公式和二倍角公式進行計算可得.【詳解】設旋轉之后的角為,由題得,,,又因為,所以得,故選B.【點睛】本題考查任意角的三角函數(shù)和三角函數(shù)的性質,是基礎題.8、C【解析】

根據(jù)通項公式,結合裂項求和法即可求得.【詳解】數(shù)列的通項公式為,則故選:C.【點睛】本題考查了裂項求和的應用,屬于基礎題.9、A【解析】

根據(jù)充分必要條件的判定,即可得出結果.【詳解】當時,是函數(shù)的對稱軸,所以“”是“函數(shù)的圖像關于直線對稱”的充分條件,當函數(shù)的圖像關于直線對稱時,,推不出,所以“”是“函數(shù)的圖像關于直線對稱”的不必要條件,綜上選.【點睛】本題主要考查了充分條件、必要條件,余弦函數(shù)的對稱軸,屬于中檔題.10、C【解析】

由數(shù)列為等差數(shù)列,當時,有,代入求解即可.【詳解】解:因為數(shù)列為等差數(shù)列,又,則,又,則,故選:C.【點睛】本題考查了等差數(shù)列的性質,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

=12、【解析】

由,結合三角函數(shù)線,即可求解,得到答案.【詳解】如圖所示,因為,所以滿足的的取值范圍為.【點睛】本題主要考查了特殊角的三角函數(shù)值,以及三角函數(shù)線的應用,著重考查了推理與運算能力,屬于基礎題.13、4【解析】

由題,根據(jù)垂徑定理求得圓心到直線的距離,可得m的值,既而求得CD的長可得答案.【詳解】因為,且圓的半徑為,所以圓心到直線的距離為,則由,解得,代入直線的方程,得,所以直線的傾斜角為,由平面幾何知識知在梯形中,.故答案為4【點睛】解決直線與圓的綜合問題時,一方面,要注意運用解析幾何的基本思想方法(即幾何問題代數(shù)化),把它轉化為代數(shù)問題;另一方面,由于直線與圓和平面幾何聯(lián)系得非常緊密,因此,準確地作出圖形,并充分挖掘幾何圖形中所隱含的條件,利用幾何知識使問題較為簡捷地得到解決.14、{m|-1<m≤1或m=-}【解析】

由x=,化簡得x2+y2=1,注意到x≥0,所以這個曲線應該是半徑為1,圓心是(0,0)的半圓,且其圖象只在一、四象限.畫出圖象,這樣因為直線與其只有一個交點,由此能求出實數(shù)m的取值范圍.【詳解】由x=,化簡得x2+y2=1,注意到x≥0,所以這個曲線應該是半徑為1,圓心是(0,0)的半圓,且其圖象只在一、四象限.畫出圖象,這樣因為直線與其只有一個交點,從圖上看出其三個極端情況分別是:①直線在第四象限與曲線相切,②交曲線于(0,﹣1)和另一個點,③與曲線交于點(0,1).直線在第四象限與曲線相切時解得m=﹣,當直線y=x+m經(jīng)過點(0,1)時,m=1.當直線y=x+m經(jīng)過點(0,﹣1)時,m=﹣1,所以此時﹣1<m≤1.綜上滿足只有一個公共點的實數(shù)m的取值范圍是:﹣1<m≤1或m=﹣.故答案為:{m|-1<m≤1或m=-}.【點睛】本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意數(shù)形結合思想的合理運用.15、【解析】

根據(jù)一元二次不等式的解法直接求解可得結果.【詳解】由得:即不等式的解集為故答案為:【點睛】本題考查一元二次不等式的求解問題,屬于基礎題.16、【解析】

首先令,分別把解出來,再利用整體換元的思想即可解決.【詳解】令所以令,所以所以【點睛】本題主要考查了整體換元的思想以及對數(shù)之間的運算和公式法解一元二次方程.整體換元的思想是高中的一個重點,也是高考常考的內容需重點掌握.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,單調遞減區(qū)間為;(2).【解析】

(1)利用兩角差的余弦公式、二倍角降冪公式以及輔助角公式將函數(shù)的解析式化簡為,由周期公式可得出函數(shù)的最小正周期,由,解出的范圍得出函數(shù)的單調遞減區(qū)間;(2)由,得出,解出該方程可得出結果.【詳解】(1),所以,函數(shù)的最小正周期為,由,得,因此,函數(shù)的單調遞減區(qū)間為;(2)令,得,或,解得或,因此,關于的方程的解集為.【點睛】本題考查三角函數(shù)基本性質的求解,解題時要將三角函數(shù)解析式利用三角恒等變換思想進行化簡,然后再利用相應公式或圖象進行求解,考查分析問題和運算求解能力,屬于中等題.18、(1)(2)【解析】

(1)由等差數(shù)列的通項公式和前n項和公式,利用已知條件求出首項和公差,由此能求出an=2n+3(2)由得,由此能求出數(shù)列的前項和.【詳解】解:(1)是等差數(shù)列,為其前項和解得:.(2),,,又.是以3為首項2為公比的等比數(shù)列.【點睛】本題考查數(shù)列的通項公式的求法,考查數(shù)列的前項和的求法解題時要認真審題注意等差數(shù)列和等比數(shù)列的性質的靈活運用.19、(1);(2)11.【解析】

(1)直接利用已知條件求出AB邊上的中點,即可求直線的方程.(2)利用所求出的直線方程利用分割法求出三角形的面積,或者求出及直線AB的方程,可得點C到直線AB的距離,求出三角形的面積.【詳解】(1)∵線段AB的中點D的坐標為,所以,由兩點式方程可得,AB邊上的中線CD所在直線的方程為,即.(2)法1:因為,點A到直線CD的距離是,所以的面積是.法2:因為,由兩點式得直線AB的方程為:,點C到直線AB的距離是,所以的面積是.【點睛】本題考查直線方程求法與點到直線距離公式應用,屬于基礎題.20、(1);(2).【解析】

(1)寫出從5個學生中任選2個人的所有等可能基本事件,計算事件2個人都是女生所含的基本事件個數(shù);(2)寫出從男生和女生中各選1個人的所有等可能基本事件,計算事件2個人包括,但不包括所含的基本事件個數(shù).【詳解】(1)由題意知,從5個學生中任選2個人,其所有等可能基本事件有:,,,,,,,,,,共10個,選2個人都是女生的事件所包含的基本事件有,,,共3個,則所求事件的概率為.(2)從男生和女生中各選1個人,其所有可能的結果組成的基本事件有,,,,,,共6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論