版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
剛體的平面運(yùn)動1
§9–1Introductiontoplanemotionofarigidbody
§9–2Planemotioncanbedecomposedinto translationandrotation·Equationsof planemotion
§9–3Velocityofapointinaplanefigure
§9–4Accelerationofapointinaplanefigure·InstantaneouscenterofzeroaccelerationLessonforproblemsolvingChapter9:Planemotionofarigidbody2
§9–1剛體平面運(yùn)動的概述§9–2平面運(yùn)動分解為平動和轉(zhuǎn)動·
剛體的平面運(yùn)動方程§9–3平面圖形內(nèi)各點(diǎn)的速度§9–4平面圖形內(nèi)各點(diǎn)的加速度·
加速度瞬心的概念習(xí)題課剛體的平面運(yùn)動3Inengineering,weoftenencountertheplanemotionofarigidbody,whichismorecomplicated.Investigationintothiskindofmotionisconductedonthebasisoftranslationandrotationofarigidbodyusingcompositionanddecompositionofmotions.Decomposingaplanemotionintotranslationandrotation,andemployingthetheoryofcompositionofmotions,theformulaeforfindingthevelocityandaccelerationofpointintherigidbodycanbederived.
§9-1Introductiontoplanemotionofarigidbody1.Definitionofplanemotionofarigidbody
Thedistancebetweenanypointinarigidbodyandafixedplanealwayskeepsunchangedduringitsmotion.Inotherwords,anypointintherigidbodymovesinaplaneparalleltothefixedplane.Themotiondescribedaboveiscalledplanemotionofarigidbody.Kinematics4
剛體的平面運(yùn)動是工程上常見的一種運(yùn)動,這是一種較為復(fù)雜的運(yùn)動.對它的研究可以在研究剛體的平動和定軸轉(zhuǎn)動的基礎(chǔ)上,通過運(yùn)動合成和分解的方法,將平面運(yùn)動分解為上述兩種基本運(yùn)動.然后應(yīng)用合成運(yùn)動的理論,推導(dǎo)出平面運(yùn)動剛體上一點(diǎn)的速度和加速度的計算公式.運(yùn)動學(xué)§9-1剛體平面運(yùn)動的概述一.平面運(yùn)動的定義
在運(yùn)動過程中,剛體上任一點(diǎn)到某一固定平面的距離始終保持不變.也就是說,剛體上任一點(diǎn)都在與該固定平面平行的某一平面內(nèi)運(yùn)動.具有這種特點(diǎn)的運(yùn)動稱為剛體的平面運(yùn)動.5Forexample:Examinethemotionoftherodinacrank-rodmechanism.SincepointAmovesinacircularpath,andpintBmovealongastraightline,themotionoftherodABisneithertranslationnorrotationaboutafixedaxis,butplanemotion.Kinematics6例如:曲柄連桿機(jī)構(gòu)中連桿AB的運(yùn)動,A點(diǎn)作圓周運(yùn)動,B點(diǎn)作直線運(yùn)動,因此,AB桿的運(yùn)動既不是平動也不是定軸轉(zhuǎn)動,而是平面運(yùn)動.運(yùn)動學(xué)7KinematicsPleaselookattheanimation8運(yùn)動學(xué)請看動畫9
2.Simplificationofaplanemotion
Aplanemotionofarigidbodycansimplifiedtoamotionofaplanefigureintheplaneitself.Asindicatedinthefigure,whenstudyingaplanemotionofarigidbody,wedonotneedtoconsideritsgeometricalshapeandsizearenotneeded,andinstead,consideringthemotionofaplanefigureisenoughtodeterminethevelocityandaccelerationofanypointintherigidbody.Kinematics10運(yùn)動學(xué)
二.平面運(yùn)動的簡化
剛體的平面運(yùn)動可以簡化為平面圖形S在其自身平面內(nèi)的運(yùn)動.即在研究平面運(yùn)動時,不需考慮剛體的形狀和尺寸,只需研究平面圖形的運(yùn)動,確定平面圖形上各點(diǎn)的速度和加速度.11§9–2Planemotioncanbedecomposedintotranslationandrotation·Equationsofplanemotion
1.Equationsofplanemotion
Todeterminethepositionofaplanefigure,whichrepresentstheplanemotionofarigidbody,onlythepositionofalinesegmentinthisfigureisneededtobedetermined.ThepositionofalinesegmentABcanbedeterminedbythecoordinatesofpointAandtheanglebetweenABandtheaxisx.Therefore,thepositionofthefigureScanbedeterminedbythesethreeindependentvariables.Hence,wehave
Kinematics12§9-2平面運(yùn)動分解為平動和轉(zhuǎn)動·
剛體的平面運(yùn)動方程運(yùn)動學(xué)
一.平面運(yùn)動方程為了確定代表平面運(yùn)動剛體的平面圖形的位置,我們只需確定平面圖形內(nèi)任意一條線段的位置.
任意線段AB的位置可用A點(diǎn)的坐標(biāo)和AB與x軸夾角表示.因此圖形S的位置決定于三個獨(dú)立的參變量.所以13
2.Planemotioncanbedecomposedintotranslationandrotation
WhenpointAinthefigureSkeepsstatic,therigidbodyrotatesaboutafixedaxisWhentheangle
inthefigureSkeepsunchanged,therigidbodyhastranslatorymotion.Therefore,aplanemotioncanbeviewedasthecompositionofatranslationandrotation.EquationsofplanemotionThecanbefoundfromthisequationatanyinstantt,andthusthelocationoftheplanefigureScanbedetermined.Kinematics14
二.平面運(yùn)動分解為平動和轉(zhuǎn)動當(dāng)圖形S上A點(diǎn)不動時,則剛體作定軸轉(zhuǎn)動當(dāng)圖形S上
角不變時,則剛體作平動.故剛體平面運(yùn)動可以看成是平動和轉(zhuǎn)動的合成運(yùn)動.運(yùn)動學(xué)平面運(yùn)動方程對于每一瞬時
t
,都可以求出對應(yīng)的,圖形S在該瞬時的位置也就確定了。15Example
Motionofawheel.
Theplanemotionofthewheelcanbeviewedasthecompositionofthetranslationwiththevehiclebodyandtherotationrelativetothevehicle.Planemotionofthewheelrelativetothestaticreferencesystem(absolutemotion)Translationofthevehiclebody(movingsystemAx
y
)relativetostaticsystem (convectedmotion)Rotationofthewheelrelativetothevehicle(movingsystemAx
y
) (relativemotion)Kinematics16運(yùn)動學(xué)例如車輪的運(yùn)動.車輪的平面運(yùn)動可以看成是車輪隨同車廂的平動和相對車廂的轉(zhuǎn)動的合成.
車輪對于靜系的平面運(yùn)動(絕對運(yùn)動)車廂(動系A(chǔ)x
y
)相對靜系的平動(牽連運(yùn)動)車輪相對車廂(動系A(chǔ)x
y
)的轉(zhuǎn)動(相對運(yùn)動)
17ThearbitrarilyselectedpointAiscalledapole.Thus,PlanemotionofawheelTranslationwiththepoleARotationaboutthepoleAAplanemotionofarigidbodycanbedecomposedintoatranslationwithapoleandarotationaboutthepole.Kinematics18運(yùn)動學(xué)
我們稱動系上的原點(diǎn)A為基點(diǎn),于是車輪的平面運(yùn)動隨基點(diǎn)A的平動繞基點(diǎn)A'的轉(zhuǎn)動剛體的平面運(yùn)動可以分解為隨基點(diǎn)的平動和繞基點(diǎn)的轉(zhuǎn)動.19
Anotherexample:planefigureSmovesfrompositionItopositionIIinainterval
t.SelectpointAasapole:TranslatethefiguretogetherwithAtothepositionA'B'',andthenrotateitaroundAthroughanangletothefinalpositionA'B‘.SelectpointAasapole:TranslateittogetherwithBtothepositionA''B',andthenrotateitaroundBthroughanangletothefinalpositionA'B'Clearly,AB
A'B''
A''B',wehaveKinematics20運(yùn)動學(xué)
再例如:平面圖形S在
t時間內(nèi)從位置I運(yùn)動到位置II
以A為基點(diǎn):
隨基點(diǎn)A平動到A'B''后,繞基點(diǎn)轉(zhuǎn)角到A'B'
以B為基點(diǎn):
隨基點(diǎn)B平動到A''B'后,繞基點(diǎn)轉(zhuǎn)角到A'B'圖中看出:AB
A'B''
A''B',于是有21
Inconclusion,thetranslationinaplanemotiondependsontheselectionofthepole,however,therotationabouttheselectedpoleDOESNOTdependonthechoiceofapole.(Inotherwords,theinstant,ofanyrotationsaboutANYpolesarethesame)Theselectionofthepoleisarbitrary.(Weusuallyselectapointwithknownmotionasthepole.)Kinematics22運(yùn)動學(xué)
所以,平面運(yùn)動隨基點(diǎn)平動的運(yùn)動規(guī)律與基點(diǎn)的選擇有關(guān),而繞基點(diǎn)轉(zhuǎn)動的規(guī)律與基點(diǎn)選取無關(guān).(即在同一瞬間,圖形繞任一基點(diǎn)轉(zhuǎn)動的,都是相同的)基點(diǎn)的選取是任意的。(通常選取運(yùn)動情況已知的點(diǎn)作為基點(diǎn))23Crank-rodmechanismRodABhasplanemotionDecompositionoftheplanemotion(pleaselookattheanimation)Kinematics24運(yùn)動學(xué)曲柄連桿機(jī)構(gòu)AB桿作平面運(yùn)動平面運(yùn)動的分解(請看動畫)25§9-3velocityofanypointinaplanefigure
Employthetheoremofvelocitycomposition
thevelocityatpointBcanbeexpressedasThevelocityofpointAinfigureSandtherotationalvelocity
ofthefigurearegiven,find.SelectAasthepole,andfixthemovingreferencesystemtopointA.Themotionofthemovingsystemistranslation.ConsiderthemovingpointB,itsmotioncanbeviewedasthecompositionofthetranslation,theconvectedmotion,andtherotation,therelativemotion pointtotherotationdirection.Kinematics1.pole-basedmethod(compositionmethod)26§9-3平面圖形內(nèi)各點(diǎn)的速度
運(yùn)動學(xué)根據(jù)速度合成定理則B點(diǎn)速度為:
一.基點(diǎn)法(合成法)取B為動點(diǎn),則B點(diǎn)的運(yùn)動可視為牽連運(yùn)動為平動和相對運(yùn)動為圓周運(yùn)動的合成已知:圖形S內(nèi)一點(diǎn)A的速度,圖形角速度
求:指向與
轉(zhuǎn)向一致.取A為基點(diǎn),將動系固結(jié)于A點(diǎn),動系作平動。27SincepointAandBarearbitrarilyselected,theequation
givestherelationshipbetweenthevelocitiesofanytwopointinthefigure.Notingthat
,projectingthisequationtoAB,gives——theoremofvelocityprojectionI.e.,thevelocityprojectionsofanytwopointinafigureonthelinelinkingthesetwopointsareidentical.Thismethodforfindthevelocityofapointiscalledvelocityprojectionmethod.Thatis,thevelocityofanypointinthefigureisobtainedasthegeometricsumofthevelocityofthepoleandtherelativerotationalvelocitywithrespecttothepole.Suchamethodoffindingthevelocityiscalledpole-basedmethod,orcompositionmethod,whichisabasicmethodtofindthevelocityofapointinafigure.2.VelocityprojectionmethodKinematics28由于A,B點(diǎn)是任意的,因此表示了圖形上任意兩點(diǎn)速度間的關(guān)系.由于恒有,因此將上式在AB上投影,有—速度投影定理即平面圖形上任意兩點(diǎn)的速度在該兩點(diǎn)連線上的投影彼此相等.這種求解速度的方法稱為速度投影法.運(yùn)動學(xué)即平面圖形上任一點(diǎn)的速度等于基點(diǎn)的速度與該點(diǎn)隨圖形繞基點(diǎn)轉(zhuǎn)動的速度的矢量和.這種求解速度的方法稱為基點(diǎn)法,也稱為合成法.它是求解平面圖形內(nèi)一點(diǎn)速度的基本方法.二.速度投影法293.Instantaneousvelocitycentermethod
(1)BackgroundIfapointwhosevelocityiszeroisselectedasthepole,theprocessoffindingthevelocityofanypointwillbegreatlysimplified.Hence,itisnaturaltoaskifsuchapointexistsinanyinstant.Ifitdoesexist,howtofindsuchapoint?
(2)ConceptofInstantaneousvelocitycenter
ConsideraplanefigureS.ThevelocityofpointAis
,andtheangularvelocityofthefigureis.Take
alineALalongthedirectionof,andthenturnit90ointhedirectionof
to
AL‘a(chǎn)ndfindthepointPinAL‘byletting,wehave Kinematics30
三.瞬時速度中心法(速度瞬心法)
1.問題的提出若選取速度為零的點(diǎn)作為基點(diǎn),求解速度問題的計算會大大簡化.于是,自然會提出,在某一瞬時圖形是否有一點(diǎn)速度等于零?如果存在的話,該點(diǎn)如何確定?運(yùn)動學(xué)
2.速度瞬心的概念平面圖形S,某瞬時其上一點(diǎn)A速度,圖形角速度
,沿方向取半直線AL,然后順
的轉(zhuǎn)向轉(zhuǎn)90o至AL'的位置,在AL'上取長度則: 31Atanyinstant,theremustexistasolepointwhosevelocityiszero,whichiscalledtheinstantaneousvelocitycenterofthisfigureatthisinstant.3.MethodstodeterminetheInstantaneousvelocitycenter①Whenthevelocityofapointandtheangularvelocity
ofthefigureareknown,theinstantaneousvelocitycenter(pointP)canbedetermined.
andpointPisinthedirectionofthelineformedbyrotatingthethrough90ointhedirectionofaroundpointA.②Whenaplanefigurerollsalongafixedsurfacewithoutslipping,thecontactpointPbetweenthefigureandthefixedsurfacewillbetheinstantaneousvelocitycenter.
Kinematics32
即在某一瞬時必唯一存在一點(diǎn)速度等于零,該點(diǎn)稱為平面圖形在該瞬時的瞬時速度中心,簡稱速度瞬心.運(yùn)動學(xué)3.幾種確定速度瞬心位置的方法
①已知圖形上一點(diǎn)的速度和圖形角速度
,可以確定速度瞬心的位置.(P點(diǎn))且P在順
轉(zhuǎn)向繞A點(diǎn)轉(zhuǎn)90o的方向一側(cè).
②已知一平面圖形在固定面上作無滑動的滾動,則圖形與固定面的接觸點(diǎn)P為速度瞬心.33
④ThemagnitudesofthevelocitiesoftwopointsAandBatanyinstantaregiven,and .(b)(a)
③WhenthedirectionsofthevelocitiesattwopointsAandBinafigureareknown,and,drawlinesfromAandBperpendiculartorespectively,andthecrosspointPofthesetwolineswillbetheinstantaneousvelocitycenter.Kinematics34
運(yùn)動學(xué)
④
已知某瞬時圖形上A,B兩點(diǎn)速度大小,且(b)(a)
③已知某瞬間平面圖形上A,B兩點(diǎn)速度的方向,且 。過A,B兩點(diǎn)分別作速度的垂線,交點(diǎn)
P即為該瞬間的速度瞬心。35
Inaddition,ifvA=vB
incase
④
,themotionisinstantaneoustranslationtoo.
⑤ThevelocitiesoftwopointsAandBpointtothesamedirectionatanyinstant,buttheyarenotperpendiculartolineAB.
Inthiscase,theinstantaneousvelocitycenterisindefinitelyfaraway,andtheangularvelocity
=0,i.e.allpointinthefigurehavethesamevelocityatthisinstantoftime.Suchamotioniscalledinstantaneoustranslation,(buttheiraccelerationsarenotidentical).Kinematics36
運(yùn)動學(xué)另:對
種(a)的情況,若vA=vB,則是瞬時平動.⑤已知某瞬時圖形上A,B兩點(diǎn)的速度方向相同,且不與AB連線垂直.此時,圖形的瞬心在無窮遠(yuǎn)處,圖形的角速度
=0,圖形上各點(diǎn)速度相等,這種情況稱為瞬時平動.(此時各點(diǎn)的加速度不相等)37
Example:Attheinstantoftimeshowninthefigure,therodBCinthecrank-rodmechanismhasinstantaneoustranslation.TheangularvelocityoftherodBC,ThevelocitiesofallpointsinBCareidentical,buttheiraccelerationsarenot.If
isuniform
,thenButthedirectionof
isalongAC,
Instantaneoustranslationisdifferentfromtranslation.Kinematics38
例如:曲柄連桿機(jī)構(gòu)在圖示位置時,連桿BC作瞬時平動.此時連桿BC的圖形角速度,BC桿上各點(diǎn)的速度都相等.但各點(diǎn)的加速度并不相等.設(shè)勻
,則而的方向沿AC的,瞬時平動與平動不同運(yùn)動學(xué)394.InstantaneousvelocitycentermethodThemethodforfindingthevelocityofapointinafigureusinginstantaneousvelocitycenteriscalledinstantaneousvelocitycentermethod.
Atanyinstantoftime,themotionofafigurecanbeviewedastherotationaroundtheinstantaneousvelocitycenter.
IfPistheinstantaneousvelocitycenter,thevelocityofanypointA anditsdirection
AP,pointingthesamedirectionwith.
5.Cautions
Thepositionofthetheinstantaneousvelocitycenterisnotfixedatalltime,itchangesinstantlywithtime,andexistsuniquelyatanyinstantoftime.
Onlythevelocityattheinstantaneousvelocitycenteriszero,butitsaccelerationisnotcertainlyzero.Thisdiffersfromtherotationaboutafixedaxis.
Whenarigidbodyisininstantaneoustranslation,althoughthevelocitiesatallpointsinitareidentical,buttheiraccelerationsarenotnecessarilyidentical.Thisisdifferentfromthetranslatorymotion.Kinematics404.速度瞬心法利用速度瞬心求解平面圖形上點(diǎn)的速度的方法,稱為速度瞬心法.平面圖形在任一瞬時的運(yùn)動可以視為繞速度瞬心的瞬時轉(zhuǎn)動,速度瞬心又稱為平面圖形的瞬時轉(zhuǎn)動中心。若P點(diǎn)為速度瞬心,則任意一點(diǎn)A的速度方向
AP,指向與
一致。
運(yùn)動學(xué)5.注意的問題
速度瞬心在平面圖形上的位置不是固定的,而是隨時間不斷變化的。在任一瞬時是唯一存在的。
速度瞬心處的速度為零,加速度不一定為零。不同于定軸轉(zhuǎn)動
剛體作瞬時平動時,雖然各點(diǎn)的速度相同,但各點(diǎn)的加速度是不一定相同的。不同于剛體作平動。41Solution:Inthismechanism,OArotatesaboutafixedaxis,ABhasplanemotion,andpistonBhastranslation.
Pole-basedmethod(compositionmethod)
ConsiderABandtakeAasthepole.Itsdirectionisshowninthefigures.()[Example1]Inacrank-rodmechanism,OA=AB=l,andthecrankOArotateswithauniform.Find:when
=45o,thevelocityofpistonBandtheangularvelocityofrodAB.KinematicsSince DrawtheparallelogramofvelocitiesatpointB,asshowninthefigure.42解:機(jī)構(gòu)中,OA作定軸轉(zhuǎn)動,AB作平面運(yùn)動,滑塊B作平動。
基點(diǎn)法(合成法)研究AB,以A為基點(diǎn),且方向如圖示。()運(yùn)動學(xué)[例1]
已知:曲柄連桿機(jī)構(gòu)OA=AB=l,取柄OA以勻
轉(zhuǎn)動。求:當(dāng)
=45o時,滑塊B的速度及AB桿的角速度.根據(jù)在B點(diǎn)做速度平行四邊形,如圖示。43()Trytocomparethesethreemethods.Employingtheoremofvelocityprojection ,WehaveWecannotfind.
Velocityprojectionmethod.ConsiderAB.,anditsdirection
OA,
isalongBO.
InstantaneousvelocitycentermethodConsiderAB.Sincethedirectionsofareknown,wecandeterminetheinstantaneouscenterofvelocityatpointP.Kinematics44()試比較上述三種方法的特點(diǎn)。運(yùn)動學(xué)根據(jù)速度投影定理不能求出
速度投影法研究AB,
,方向
OA,方向沿BO直線
速度瞬心法研究AB,已知的方向,因此可確定出P點(diǎn)為速度瞬心45§9-4Accelerationofapointinaplanefigure·InstantaneouscenterofaccelerationTakeAasthepole,andfixthemovingreferencesystemontoA.TakeBasthemovingpoint,themotionofpointBcanbedecomposedintoarelativemotion(circularmotion)andaconvectedmotion(translation)withthepole.Hence,employingthetheoremofaccelerationcomposition ,thefollowingformulacanbeobtained:1.Pole-basedmethod(compositionmethod)Ataninstantoftime,theaccelerationofapointAinafigureS,
and
aregiven.FindtheaccelerationofanypointBinthefigure.Kinematics46§9-4平面圖形內(nèi)各點(diǎn)的加速度加速度瞬心的概念取A為基點(diǎn),將平動坐標(biāo)系固結(jié)于A點(diǎn)取B動點(diǎn),則B點(diǎn)的運(yùn)動分解為相對運(yùn)動為圓周運(yùn)動和牽連運(yùn)動為平動.于是,由牽連平動時加速度合成定理可得如下公式.運(yùn)動學(xué)一.基點(diǎn)法(合成法)已知:圖形S內(nèi)一點(diǎn)A的加速度和圖形的
,
(某一瞬時)。求:該瞬時圖形上任一點(diǎn)B的加速度。47where
,direction
AB,pointingtothesamedirectionwith
;whichisalongABandpointstoA.
Theaccelerationofanypointinafigureequalstothegeometricsumoftheaccelerationofthepole,tangentialandnormalaccelerationsofthispointrotatingaboutthepoletogetherwiththefigure.Thismethodtofindtheaccelerationofapointiscallpole-basedmethod,orcompositionmethod,whichisthebasicmethodtofindingtheaccelerationofapointinaplanefigure.Theformulagivenaboveisanequationintermsofplanevectors.Therefore,wecansolvetwounknownsfromitprovidedthattheothervariablesaregiven.Sincethedirectionsof
arealwaysknown,tosolvetheunknowns,onlyfourothervariablesareneeded.Kinematics48其中:,方向
AB,指向與
一致;,方向沿AB,指向A點(diǎn)。運(yùn)動學(xué)即平面圖形內(nèi)任一點(diǎn)的加速度等于基點(diǎn)的加速度與該點(diǎn)隨圖形繞基點(diǎn)轉(zhuǎn)動的切向加速度和法向加速度的矢量和。這種求解加速度的方法稱為基點(diǎn)法,也稱為合成法。是求解平面圖形內(nèi)一點(diǎn)加速度的基本方法。上述公式是一平面矢量方程。需知其中六個要素,方能求出其余兩個。由于方位總是已知,所以在使用該公式中,只要再知道四個要素,即可解出問題的待求量。49
2.Instantaneouscenterofacceleration
DuetothedependentofonthepointB,wecanalwaysfindapointQinthefigure,atwhichtherelativeaccelerationhasthesamemagnitudebutoppositedirectionwiththeaccelerationinthepolesothattheabsoluteacceleration.SuchapointQiscalledtheinstantaneouscenterofacceleration.Kinematics50
二.加速度瞬心.由于的大小和方向隨B點(diǎn)的不同而不同,所以總可以在圖形內(nèi)找到一點(diǎn)Q,在此瞬時,相對加速度大小恰與基點(diǎn)A的加速度等值反向,其絕對加速度,Q點(diǎn)就稱為圖形在該瞬時的加速度瞬心.運(yùn)動學(xué)51[Note]
Ingeneral,theinstantaneouscenterofaccelerationdoesnotcoincidewiththeinstantaneouscenterofvelocity.
Ingeneral,thereisnosimilarrelationshipbetweentheaccelerationsattwopointsgiveninthetheoremofvelocityprojection.Thatistosay,thefollowingrelationshipdoesnotholdingeneral:Onlyinthespecialcasewhere
=0,thefigureisininstantaneoustranslation,holds.Inotherwords,iftheangularvelocityofaplanefigureiszeroataninstantoftime,theaccelerationprojectionsofanytwopointinafigureonthelinelinkingthesetwopointsareidentical
.Kinematics52運(yùn)動學(xué)[注]
一般情況下,加速度瞬心與速度瞬心不是同一個點(diǎn).
一般情況下,對于加速度沒有類似于速度投影定理的關(guān)系式.即一般情況下,圖形上任意兩點(diǎn)A,B的加速度
若某瞬時圖形
=0,即瞬時平動,則有即若平面圖形在運(yùn)動過程中某瞬時的角速度等于零,則該瞬時圖形上任意兩點(diǎn)的加速度在這兩點(diǎn)連線上的投影相等.53
Sinceitisnoteasytofindtheinstantaneouscenterofaccelerationandtheredoesnotexistsarelationshipsimilartothetheoremofvelocityprojection,instantaneouscenterofaccelerationisnotwidelyusedtofindaccelerationsofagivenpoint.Instead,thepolemethodisoftenemployed.Analysis:
magnitude?√R
Rw
2
direction?√√√Therefore,
and
shouldbesolvedfirst.()
[Example1]
AwheelwithradiusRrollsonaplanesurfacewithoutslipping.ThevelocityandaccelerationattheitscenterOaregiven.FindtheaccelerationatthecontactpointP.Solution:ThewheelhasplanemotionandPistheinstantaneousvelocitycenter.Kinematics54
由于加速度瞬心的位置不象速度瞬心那樣容易確定,且一般情況下又不存在類似于速度投影定理的關(guān)系式,故常采用基點(diǎn)法求圖形上各點(diǎn)的加速度或圖形角加速度.分析:大???√R
Rw
2
方向?√√√故應(yīng)先求出
.()運(yùn)動學(xué)
[例1]
半徑為R的車輪沿直線作純滾動,已知輪心O點(diǎn)的速度及加速度,求車輪與軌道接觸點(diǎn)P的加速度.解:輪O作平面運(yùn)動,P為速度瞬心,55Sincetheequationgivenaboveisvalidatanyinstant,andpointOmovesalongastraightline,weobtain()Itisevidentthattheaccelerationattheinstantaneouscenterofvelocityisnotzero,whichmeansthatpointPisnottheinstantaneouscenterofacceleration.Inthiscase,theaccelerationofattheinstantaneouscenterofvelocityPpointstothecenterofthewheel.
TakingOasthepole,yields
Asshowninthevectordiagramoftheaccelerations,(andareequalinmagnitudebutoppositeindirection)
i.e.
Kinematics56
由于此式在任何瞬時都成立,且O點(diǎn)作直線運(yùn)動,故而()
由此看出,速度瞬心P的加速度并不等于零,即它不是加速度瞬心.當(dāng)車輪沿固定的直線軌道作純滾動時,其速度瞬心P的加速度指向輪心.運(yùn)動學(xué)以O(shè)為基點(diǎn),有其中:做出加速度矢量圖,由圖中看出:(與等值反向)
即57Solution:(a)ABhastranslation,[Example2]Attheinstantshowninthefigure,O1A=O2BandO1A/O2B.Are
1and
2or
1and
2identicalincase(a)and(b).
(a)(b)Kinematics58解:(a)AB作平動,運(yùn)動學(xué)[例2]
已知O1A=O2B,圖示瞬時O1A/O2B
試問(a),(b)兩種情況下
1和
2,
1和
2是否相等?(a)(b)59(b)ABhasplanemotion,anditisininstantaneoustranslationatthisinstantoftime.Therefore .Kinematics60(b)AB作平面運(yùn)動,圖示瞬時作瞬時平動,此時運(yùn)動學(xué)61[Example3]Inacrank-rodmechanism,theradiusofthewheelisR=15cm,n=60rpmFind
Band
B
ofthewheelwhen
=60oandOA
AB.Lookfortheanimationonthenextpage
Kinematics62運(yùn)動學(xué)[例3]
曲柄滾輪機(jī)構(gòu)滾子半徑R=15cm,n=60rpm求:當(dāng)
=60o時(OA
AB),滾輪的
B,
B.翻頁請看動畫
63LookattheanimationKinematics64請看動畫65
Solution:OArotatesaboutafixedaxis,ABandwheelBhaveplanemotions.Consider
rodAB.()P1istheinstantaneousvelocitycenterofABAnalysis:Tofind
B,
B
ofthewheel,vB
and
aB
shouldbeworkedoutfirst.P2P1vBP2istheinstantaneousvelocitycenterofthewheelKinematics66
解:OA定軸轉(zhuǎn)動,AB桿和輪B作平面運(yùn)動研究AB:()P1為其速度瞬心運(yùn)動學(xué)分析:要想求出滾輪的
B,
B先要求出vB,
aBP2P1vBP2為輪速度瞬心67TakeAasthepole,PointingtoOMagnitude?√?√Direction√√√√Drawthevectordiagramforaccelerations.ProjectingtheaboveequationontoBA,gives)()(ConsiderwheelB:its
instantaneousvelocitycenterisP2Kinematics68運(yùn)動學(xué)取A為基點(diǎn),指向O點(diǎn)大???√?√方向√√√√作加速度矢量圖,將上式向BA線上投影)()(研究輪B:P2為其速度瞬心69LessonofproblemsolvingforChapter91.Conceptsandcontent
(1)Definitionofplanemotion
Thedistancebetweenanypointinarigidbodyandafixedplanealwayskeepsunchangedduringitsmotion.
(2)Simplificationofplanemotion
ThemotionofaplanefigureintherigidbodyparallelwiththefixedplaneSinitsownplanecanbeusedtorepresenttheplanemotionoftheentirerigidbody.
(3)Decompositionofplanemotion.Itcanbedecomposedinto:
(4)Pole
Theoreticallyspeaking,anyapointinthefigurecanbeselectedasthepole.Weusuallychoseapointwithknownmotionasthepole.Translationtogetherwiththepole(itdependsonthechoiceofpole)
Rotationaroundthepole(itdoesnotdependontheselectionofpole)Kinematics70剛體平面運(yùn)動習(xí)題課一.概念與內(nèi)容
1.剛體平面運(yùn)動的定義剛體運(yùn)動時,其上任一點(diǎn)到某固定平面的距離保持不變.
2.剛體平面運(yùn)動的簡化可以用剛體上一個與固定平面平行的平面圖形S在自身平面內(nèi)的運(yùn)動代替剛體的整體運(yùn)動.
3.剛體平面運(yùn)動的分解分解為
4.基點(diǎn)
可以選擇平面圖形內(nèi)任意一點(diǎn),通常是運(yùn)動狀態(tài)已知的點(diǎn).隨基點(diǎn)的平動(平動規(guī)律與基點(diǎn)的選擇有關(guān))繞基點(diǎn)的轉(zhuǎn)動(轉(zhuǎn)動規(guī)律與基點(diǎn)的選擇無關(guān))運(yùn)動學(xué)71(5)Instantaneouscenterofvelocity
Atanyinstantoftime,thereexistsasolepointinthefigureoritsextensionwhosevelocityiszero.
Thelocationoftheinstantaneouscenterofvelocitychangeswithtime.
Atanyinstant,themotionofaplanefigurecanbeviewedastheinstantrotationaroundtheinstantaneouscenterofvelocity.However,thisinstantrotationisdifferentfromtherotationaboutafixedaxis.
=0,instantaneouscenterofvelocityisindefinitelyfaraway.Inthiscase,allpointshavethesamevelocityandtherigidbodyisininstantaneoustranslation.
Notethatinstantaneoustranslationisdifferentfromtranslation.Kinematics72運(yùn)動學(xué)5.瞬心(速度瞬心)
任一瞬時,平面圖形或擴(kuò)大部分都唯一存在一個速度為零的點(diǎn)
瞬心位置隨時間改變.
每一瞬時平面圖形的運(yùn)動可視為繞該瞬時瞬心的轉(zhuǎn)動.這種瞬時繞瞬心的轉(zhuǎn)動與定軸轉(zhuǎn)動不同.
=0,瞬心位于無窮遠(yuǎn)處,各點(diǎn)速度相同,剛體作瞬時平動,瞬時平動與平動不同.73(6)Rotationandtranslationaretwospecialcasesofplanemotion.(7)Methodstofindvelocityofanypointinafigure
polemethod:
velocityprojectionmethod:
instantaneousvelocitycentermethod:Inthesemethods,thepolemethodsisthebasicmethod,andtheinstantaneousvelocitycentermethodisaspecialcaseofthepolemethod.Kinematics74運(yùn)動學(xué)6.剛體定軸轉(zhuǎn)動和平面平動是剛體平面運(yùn)動的特例.7.求平面圖形上任一點(diǎn)速度的方法
基點(diǎn)法:
速度投影法:
速度瞬心法:其中,基點(diǎn)法是最基本的公式,瞬心法是基點(diǎn)法的特例.75
(8)Methodstofindaccelerationofapointinafigurepolemethod:,Aisthepole.Thisisthemostusefulmethod.Inaddition,when
=0,i.e.instantaneoustranslation,wecanalsoemploy
.Itisthespecialcaseofthepolemethodwhen
=0.(9)Conditionsfortheapplicationsofthemethodsusedinplanemotionandcompositionofmotions
methodsusedinplanemotionareappliedtofindtherelationshipbetweenthevelocities/accelerationsofanytwopointsordeterminetherelationshipamongthevelocity,accelerationofapointandtheangularvelocityandangularaccelerationofONErigidbodyhavingplanemotion.
ThemethodsusedinthecompositionofmotionsareusuallyappliedtodeterminethetransferofmotionatthecontactpointwhereTWOrigidbodiesareincontactandrelativeslippingexists.
Kinematics76
8.求平面圖形上一點(diǎn)加速度的方法 基點(diǎn)法:,A為基點(diǎn),是最常用的方法 此外,當(dāng)
=0,瞬時平動時也可采用方法 它是基點(diǎn)法在
=0時的特例。運(yùn)動學(xué)9.平面運(yùn)動方法與合成運(yùn)動方法的應(yīng)用條件
平面運(yùn)動方法用于研究一個平面運(yùn)動剛體上任意兩點(diǎn)的速度、加速度之間的關(guān)系及任意一點(diǎn)的速度、加速度與圖形角速度、角加速度之間的關(guān)系.
合成運(yùn)動方法常用來確定兩個相接觸的物體在接觸點(diǎn)處有相對滑動時的運(yùn)動關(guān)系的傳遞.772.Stepsinproblemsolvingandsomekeypoints
(1)Accordingtotheinformationgivenintheproblemandthedefinitionsofthemotionsofarigidbody,determinethetypeofmotionsoftherigidbodiesappearedintheproblem.Notethatonlyonerigidbodyshouldbeconsideredeachtime.
Kinematics(2)Forarigidbodywithplanemotion,,properlychooseasuitablemethodtofindthevelocity(orangularvelocity)ofapointbasedontheknownandunknownconditions.Tofindaccelerations,polemethodisrecommended.
(3)Dothethoroughanalysisforvelocitiesandaccelerations,andfinallysolvetheunknowns.(Polemethod:properlyselectapoleandthendrawtheparallelogramforvelocitiesandthevectordiagramforaccelerations;Velocityprojectionmethod:itslimitationisthat
cannotbefound;Instantaneousvelocitycentermethod:findtheInstantaneousvelocitycenteristhekeystep.)78二.解題步驟和要點(diǎn)
1.根據(jù)題意和剛體各種運(yùn)動的定義,判斷機(jī)構(gòu)中各剛體的運(yùn)動形式.注意每一次的研
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 有關(guān)電動滑板的課程設(shè)計
- 灌溉課程設(shè)計案例教案
- 給水泵課程設(shè)計
- 智慧健身普拉提課程設(shè)計
- 氬弧焊流程理論課程設(shè)計
- 投標(biāo)報價編制課程設(shè)計
- 智能儀表課程設(shè)計的緒論
- 統(tǒng)計戰(zhàn)線課程設(shè)計
- 早教雪人創(chuàng)意課程設(shè)計
- 牙齒咔咔咔主題課程設(shè)計
- 環(huán)保監(jiān)測數(shù)據(jù)質(zhì)量控制預(yù)案
- GB/T 33629-2024風(fēng)能發(fā)電系統(tǒng)雷電防護(hù)
- 建筑工程施工現(xiàn)場安全檢查手冊
- 山東省濰坊市2023-2024學(xué)年高二下學(xué)期期末考試 物理 含解析
- 事業(yè)單位會計專業(yè)考試題庫(含答案)
- 小學(xué)英語語法練習(xí)模擬試卷
- 高標(biāo)準(zhǔn)農(nóng)田建設(shè)項(xiàng)目安全文明施工方案
- 人才儲備營銷策略
- 2024-2025學(xué)年一年級上冊數(shù)學(xué)北師大版4.6《挖紅薯》(教學(xué)設(shè)計)
- 幼兒園小班安全教育《危險的東西不要碰》課件
- 糖尿病患者體重管理專家共識(2024年版)解讀
評論
0/150
提交評論