四川省眉山市仁壽第一中學校南校區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題含解析_第1頁
四川省眉山市仁壽第一中學校南校區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題含解析_第2頁
四川省眉山市仁壽第一中學校南校區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題含解析_第3頁
四川省眉山市仁壽第一中學校南校區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題含解析_第4頁
四川省眉山市仁壽第一中學校南校區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省眉山市仁壽第一中學校南校區(qū)2025屆數(shù)學高一下期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知全集,集合,,則為()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}2.某市電視臺為調(diào)查節(jié)目收視率,想從全市3個縣按人口數(shù)用分層抽樣的方法抽取一個容量為的樣本,已知3個縣人口數(shù)之比為,如果人口最多的一個縣抽出60人,那么這個樣本的容量等于()A.96 B.120 C.180 D.2403.設,若不等式恒成立,則實數(shù)a的取值范圍是()A. B. C. D.4.函數(shù)的最小正周期為π,若其圖象向左平移個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象()A.關于點對稱 B.關于點對稱C.關于直線對稱 D.關于直線對稱5.如圖是某個正方體的平面展開圖,,是兩條側面對角線,則在該正方體中,與()A.互相平行 B.異面且互相垂直 C.異面且夾角為 D.相交且夾角為6.若,且,則的值為A. B. C. D.7.已知數(shù)列是等差數(shù)列,數(shù)列滿足,的前項和用表示,若滿足,則當取得最大值時,的值為()A.16 B.15 C.14 D.138.已知,則()A. B. C. D.9.已知實數(shù)滿足,則的最大值為()A.8 B.2 C.4 D.610.已知函數(shù),那么下列式子:①;②;③;④;其中恒成立的是()A.①② B.②③ C.①②④ D.②③④二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角的對邊分別為,若面積,則角__________.12.已知為銳角,則_______.13.如圖是一個算法流程圖.若輸出的值為4,則輸入的值為______________.14.一個扇形的半徑是,弧長是,則圓心角的弧度數(shù)為________.15.已知數(shù)列前項和,則該數(shù)列的通項公式______.16.已知點,,若向量,則向量______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知直線和.(1)若與互相垂直,求實數(shù)的值;(2)若與互相平行,求與與間的距離,18.已知函數(shù),(1)求的單調(diào)遞增區(qū)間.(2)求在區(qū)間的最大值和最小值.19.已知是圓的直徑,垂直圓所在的平面,是圓上任一點.求證:平面⊥平面.20.已知平面向量滿足:(1)求與的夾角;(2)求向量在向量上的投影.21.已知函數(shù),(1)求函數(shù)的最小正周期;(2)設的內(nèi)角的對邊分別為,且,,,求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

先根據(jù)全集U求出集合A的補集,再求與集合B的并集.【詳解】由題得,故選C.【點睛】本題考查集合的運算,屬于基礎題.2、B【解析】

根據(jù)分層抽樣的性質,直接列式求解即可.【詳解】因為3個縣人口數(shù)之比為,而人口最多的一個縣抽出60人,則根據(jù)分層抽樣的性質,有,故選:B.【點睛】本題考查分層抽樣,解題關鍵是明確分層抽樣是按比例進行抽樣.3、D【解析】

由題意可得恒成立,討論,,運用基本不等式,可得最值,進而得到所求范圍.【詳解】恒成立,即為恒成立,當時,可得的最小值,由,當且僅當取得最小值8,即有,則;當時,可得的最大值,由,當且僅當取得最大值,即有,則,綜上可得.故選.【點睛】本題主要考查不等式恒成立問題的解法,注意運用參數(shù)分離和分類討論思想,以及基本不等式的應用,意在考查學生的轉化思想、分類討論思想和運算能力.4、C【解析】

利用最小正周期為π,求出的值,根據(jù)平移得出,然后利用對稱性求解.【詳解】因為函數(shù)的最小正周期為π,所以,圖象向左平移個單位后得到,由得到的函數(shù)是奇函數(shù)可得,即.令得,,故A,B均不正確;令得,,時可得C正確.故選C.【點睛】本題主要考查三角函數(shù)的圖像變換和性質.平移變換時注意平移方向和對解析式的影響,性質求解一般利用整體換元意識來處理.5、D【解析】

先將平面展開圖還原成正方體,再判斷求解.【詳解】將平面展開圖還原成正方體如圖所示,則B,C兩點重合,所以與相交,連接,則為正三角形,所以與的夾角為.故選D.【點睛】本題主要考查空間直線的位置關系,意在考查學生對該知識的理解掌握水平和分析推理能力.6、A【解析】

利用誘導公式求得sinα的值,再利用同角三角函數(shù)的基本關系求得cosα,再利用二倍角公式,求得sin2α的值.【詳解】解:,且,,則,故選A.【點睛】本題主要考查利用誘導公式、同角三角函數(shù)的基本關系,二倍角公式進行化簡三角函數(shù)式,屬于基礎題.7、A【解析】

設等差數(shù)列的公差為,根據(jù)得到,推出,判斷出當時,;時,;再根據(jù),判斷出對取正負的影響,進而可得出結果.【詳解】設等差數(shù)列的公差為,因為數(shù)列是等差數(shù)列,,所以,因此,所以,所以,,因此,當時,;時,,因為,所以當時,,當時,,當時,,當時,因為,所以;因為所以,當時,取得最大值.故選:A【點睛】本題主要考查等差數(shù)列的應用,熟記等差數(shù)列的性質,及其函數(shù)特征即可,屬于??碱}型.8、C【解析】

根據(jù)特殊值排除A,B選項,根據(jù)單調(diào)性選出C,D選項中的正確選項.【詳解】當時,,故A,B兩個選項錯誤.由于,故,所以C選項正確,D選項錯誤.故本小題選C.【點睛】本小題主要考查三角函數(shù)值,考查對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性,屬于基礎題.9、D【解析】

設點,根據(jù)條件知點均在單位圓上,由向量數(shù)量積或斜率知識,可發(fā)現(xiàn),對目標式子進行變形,發(fā)現(xiàn)其幾何意義為兩點到直線的距離之和有關.【詳解】設,,均在圓上,且,設的中點為,則點到原點的距離為,點在圓上,設到直線的距離分別為,,,.【點睛】利用數(shù)形結合思想,發(fā)現(xiàn)代數(shù)式的幾何意義,即構造系數(shù),才能看出目標式子的幾何意義為兩點到直線距離之和的倍.10、A【解析】

根據(jù)正弦函數(shù)的周期性及對稱性,逐項判斷,即可得到本題答案.【詳解】由,得,所以的最小正周期為,即,故①正確;由,令,得的對稱軸為,所以是的對稱軸,不是的對稱軸,故②正確,③不正確;由,令,得的對稱中心為,所以不是的對稱中心,故④不正確.故選:A【點睛】本題主要考查正弦函數(shù)的周期性以及對稱性.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)面積公式計算出的值,然后利用反三角函數(shù)求解出的值.【詳解】因為,所以,則,則有:.【點睛】本題考查三角形的面積公式以及余弦定理的應用,難度較易.利用面積公式的時候要選擇合適的公式進行化簡,可根據(jù)所求角進行選擇.12、【解析】

利用同角三角函數(shù)的基本關系得,再根據(jù)角度關系,利用誘導公式即可得答案.【詳解】∵且,∴;∵,∴.故答案為:.【點睛】本題考查同角三角函數(shù)的基本關系、誘導公式,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號問題.13、-1【解析】

對的范圍分類,利用流程圖列方程即可得解.【詳解】當時,由流程圖得:令,解得:,滿足題意.當時,由流程圖得:令,解得:,不滿足題意.故輸入的值為:【點睛】本題主要考查了流程圖知識,考查分類思想及方程思想,屬于基礎題.14、2【解析】

直接根據(jù)弧長公式,可得.【詳解】因為,所以,解得【點睛】本題主要考查弧長公式的應用.15、【解析】

由,n≥2時,兩式相減,可得{an}的通項公式;【詳解】∵Sn=2n2(n∈N*),∴n=1時,a1=S1=2;n≥2時,an=Sn﹣=4n﹣2,a1=2也滿足上式,∴an=4n﹣2故答案為【點睛】本題考查數(shù)列的遞推式,考查數(shù)列的通項,屬于基礎題.16、【解析】

通過向量的加減運算即可得到答案.【詳解】,.【點睛】本題主要考查向量的基本運算,難度很小.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)直線垂直的公式求解即可.(2)根據(jù)直線平行的公式求解,再利用平行線間的距離公式求解即可.【詳解】解(1)∵與互相垂直,∴,解得.(2)由與互相平行,∴,解得.直線化為:,∴與間的距離.【點睛】本題主要考查了直線平行與垂直以及平行線間的距離公式.屬于基礎題.18、(1),;(2)最大值為,最小值為【解析】

利用二倍角公式、兩角和差正弦公式和輔助角公式可化簡出;(1)令,解出的范圍即為所求單調(diào)遞增區(qū)間;(2)利用的范圍可求得所處的范圍,整體對應正弦函數(shù)圖象可確定最大值和最小值取得時的值,進而求得最值.【詳解】(1)令,,解得:,的單調(diào)遞增區(qū)間為,(2)當時,當時,取得最大值,最大值為當時,取得最小值,最小值為【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間和最值的求解問題,涉及到利用兩角和差公式、二倍角公式和輔助角公式化簡三角函數(shù);關鍵是能夠靈活應用整體對應的方式,結合正弦函數(shù)的圖象與性質來進行求解.19、證明見解析【解析】

先證直線平面,再證平面⊥平面.【詳解】證明:∵是圓的直徑,是圓上任一點,,,平面,平面,,又,平面,又平面,平面⊥平面.【點睛】本題考查圓周角及線面垂直判定定理、面面垂直判定定理的應用,考查垂直關系的簡單證明.20、(1);(2).【解析】

(1)由題,先求得的大小,再根據(jù)數(shù)量積的公式,可得與的夾角;(2)先求得的模長,再直接利用向量幾何意義的公式,求得結果即可.【詳解】(1)∵,∴,又∵,∴,∴,∴(2)∵,∴∴向量在向量上的投影為【點睛】本題考查了向量的知識,熟悉向量數(shù)量積的知識點和幾何意義是解題的關鍵所在,屬于中檔題.21、(1);(2).【解析】

(1)利用二倍角和輔助角公式可將函數(shù)整理為,利用求得結果;(2)由,結合的范圍可求得;利用兩角和差正弦公式和二倍角公式化

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論