廣東省肇慶市德慶縣重點達標名校2024屆中考聯(lián)考數學試卷含解析_第1頁
廣東省肇慶市德慶縣重點達標名校2024屆中考聯(lián)考數學試卷含解析_第2頁
廣東省肇慶市德慶縣重點達標名校2024屆中考聯(lián)考數學試卷含解析_第3頁
廣東省肇慶市德慶縣重點達標名校2024屆中考聯(lián)考數學試卷含解析_第4頁
廣東省肇慶市德慶縣重點達標名校2024屆中考聯(lián)考數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省肇慶市德慶縣重點達標名校2024屆中考聯(lián)考數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將△ABC繞點C(0,-1)旋轉180°得到△A′B′C,設點A的坐標為(a,b),則點A′的坐標為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)2.用加減法解方程組時,若要求消去,則應()A. B. C. D.3.反比例函數y=1-6txA.t<16B.t>16C.t≤14.的值是()A.1 B.﹣1 C.3 D.﹣35.已知a<1,點A(x1,﹣2)、B(x2,4)、C(x3,5)為反比例函數圖象上的三點,則下列結論正確的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x16.如圖所示的幾何體的左視圖是()A. B. C. D.7.如圖,AB是⊙O的弦,半徑OC⊥AB于D,若CD=2,⊙O的半徑為5,那么AB的長為()A.3 B.4 C.6 D.88.圖(1)是一個長為2m,寬為2n(m>n)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個正方形,則中間空的部分的面積是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.3月22日,美國宣布將對約600億美元進口自中國的商品加征關稅,中國商務部隨即公布擬對約30億美元自美進口商品加征關稅,并表示,中國不希望打貿易戰(zhàn),但絕不懼怕貿易戰(zhàn),有信心,有能力應對任何挑戰(zhàn).將數據30億用科學記數法表示為()A.3×109 B.3×108 C.30×108 D.0.3×101010.如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖不變,左視圖不變B.左視圖改變,俯視圖改變C.主視圖改變,俯視圖改變D.俯視圖不變,左視圖改變二、填空題(本大題共6個小題,每小題3分,共18分)11.在函數中,自變量x的取值范圍是_________.12.如圖,數軸上不同三點對應的數分別為,其中,則點表示的數是__________.13.將一副三角板如圖放置,若,則的大小為______.14.已知∠=32°,則∠的余角是_____°.15.分解因式:a2-2ab+b2-1=______.16.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.三、解答題(共8題,共72分)17.(8分)某學校“智慧方園”數學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經過社團成員討論發(fā)現,過點B作BD∥AC,交AO的延長線于點D,通過構造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.18.(8分)某學校為增加體育館觀眾坐席數量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設計方案是否滿足安全要求呢?請說明理由.(參考數據:sin37°≈,tan37°≈)19.(8分)某調查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調查,并把所得數據整理后繪制成如下的統(tǒng)計圖:(1)該調查小組抽取的樣本容量是多少?(2)求樣本學生中陽光體育運動時間為1.5小時的人數,并補全占頻數分布直方圖;(3)請估計該市中小學生一天中陽光體育運動的平均時間.20.(8分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側取點A、B,使∠CAD=30,∠CBD=60.(1)求AB的長(精確到0.1米,參考數據:);(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.21.(8分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結果保留根號形式)22.(10分)某年級組織學生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統(tǒng)計圖反映了學生報名參加夏令營的情況,請你根據圖中的信息回答下列問題:該年級報名參加丙組的人數為;該年級報名參加本次活動的總人數,并補全頻數分布直方圖;根據實際情況,需從甲組抽調部分同學到丙組,使丙組人數是甲組人數的3倍,應從甲組抽調多少名學生到丙組?23.(12分)在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.求每臺電腦、每臺電子白板各多少萬元?根據學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.24.邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉過程中,AD′和BE′有怎樣的數量關系?并說明理由;②連接AP,當AP最大時,求AD′的值.(結果保留根號)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

設點A的坐標是(x,y),根據旋轉變換的對應點關于旋轉中心對稱,再根據中點公式列式求解即可.【詳解】根據題意,點A、A′關于點C對稱,

設點A的坐標是(x,y),

=0,

=-1,

解得x=-a,y=-b-2,

∴點A的坐標是(-a,-b-2).

故選D.【點睛】本題考查了利用旋轉進行坐標與圖形的變化,根據旋轉的性質得出點A、A′關于點C成中心對稱是解題的關鍵2、C【解析】

利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應①×5+②×3,

故選C【點睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.3、B【解析】

將一次函數解析式代入到反比例函數解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數圖象有兩個交點,且兩交點橫坐標的積為負數,根據根的判別式以及根與系數的關系可求解.【詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數圖象有兩個交點,且兩交點橫坐標的積為負數,∴(-解不等式組,得t>16故選:B.點睛:此題主要考查了反比例函數與一次函數的交點問題,關鍵是利用兩個函數的解析式構成方程,再利用一元二次方程的根與系數的關系求解.4、B【解析】

直接利用立方根的定義化簡得出答案.【詳解】因為(-1)3=-1,=﹣1.故選:B.【點睛】此題主要考查了立方根,正確把握立方根的定義是解題關鍵.,5、B【解析】

根據的圖象上的三點,把三點代入可以得到x1=﹣,x1=,x3=,在根據a的大小即可解題【詳解】解:∵點A(x1,﹣1)、B(x1,4)、C(x3,5)為反比例函數圖象上的三點,∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故選B.【點睛】此題主要考查一次函數圖象與系數的關系,解題關鍵在于把三點代入,在根據a的大小來判斷6、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.7、D【解析】

連接OA,構建直角三角形AOD;利用垂徑定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的長度,從而求得AB=2AD=1.【詳解】連接OA.∵⊙O的半徑為5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=AB;在直角三角形ODC中,根據勾股定理,得AD==4,∴AB=1.故選D.【點睛】本題考查了垂徑定理、勾股定理.解答該題的關鍵是通過作輔助線OA構建直角三角形,在直角三角形中利用勾股定理求相關線段的長度.8、C【解析】

解:由題意可得,正方形的邊長為(m+n),故正方形的面積為(m+n)1.又∵原矩形的面積為4mn,∴中間空的部分的面積=(m+n)1-4mn=(m-n)1.故選C.9、A【解析】

科學記數法的表示形式為的形式,其中,n為整數確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同當原數絕對值時,n是正數;當原數的絕對值時,n是負數.【詳解】將數據30億用科學記數法表示為,故選A.【點睛】此題考查科學記數法的表示方法科學記數法的表示形式為的形式,其中,n為整數,表示時關鍵要正確確定a的值以及n的值.10、A【解析】

分別得到將正方體①移走前后的三視圖,依此即可作出判斷.【詳解】將正方體①移走前的主視圖為:第一層有一個正方形,第二層有四個正方形,正方體①移走后的主視圖為:第一層有一個正方形,第二層有四個正方形,沒有改變。將正方體①移走前的左視圖為:第一層有一個正方形,第二層有兩個正方形,正方體①移走后的左視圖為:第一層有一個正方形,第二層有兩個正方形,沒有發(fā)生改變。將正方體①移走前的俯視圖為:第一層有四個正方形,第二層有兩個正方形,正方體①移走后的俯視圖為:第一層有四個正方形,第二層有兩個正方形,發(fā)生改變。故選A.【點睛】考查了三視圖,從幾何體的正面,左面,上面看到的平面圖形中正方形的列數以及每列正方形的個數是解決本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≤1且x≠﹣1【解析】試題分析:根據二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.考點:函數自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.12、1【解析】

根據兩點間的距離公式可求B點坐標,再根據絕對值的性質即可求解.【詳解】∵數軸上不同三點A、B、C對應的數分別為a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案為1.【點睛】考查了實數與數軸,絕對值,關鍵是根據兩點間的距離公式求得B點坐標.13、160°【解析】試題分析:先求出∠COA和∠BOD的度數,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案為160°.考點:余角和補角.14、58°【解析】

根據余角:如果兩個角的和等于90°(直角),就說這兩個角互為余角.即其中一個角是另一個角的余角可得答案.【詳解】解:∠α的余角是:90°-32°=58°.故答案為58°.【點睛】本題考查余角,解題關鍵是掌握互為余角的兩個角的和為90度.15、(a-b+1)(a-b-1)【解析】

當被分解的式子是四項時,應考慮運用分組分解法進行分解,前三項a2-2ab+b2可組成完全平方公式,再和最后一項用平方差公式分解.【詳解】a2-2ab+b2-1,

=(a-b)2-1,

=(a-b+1)(a-b-1).【點睛】本題考查用分組分解法進行因式分解.難點是采用兩兩分組還是三一分組.本題前三項可組成完全平方公式,可把前三項分為一組,分解一定要徹底.16、﹣2【解析】

連結AE,如圖1,先根據等腰直角三角形的性質得到AB=AC=4,再根據圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的O上,于是當點O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計算出OC=2,從而得到CE的最小值為2﹣2.【詳解】連結AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點E在以AB為直徑的O上,∵O的半徑為2,∴當點O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【點睛】此題考查等腰直角三角形的性質,圓周角定理,勾股定理,解題關鍵在于結合實際運用圓的相關性質.三、解答題(共8題,共72分)17、(1)75;4;(2)CD=4.【解析】

(1)根據平行線的性質可得出∠ADB=∠OAC=75°,結合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質可求出OD的值,進而可得出AD的值,由三角形內角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)過點B作BE∥AD交AC于點E,如圖所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【點睛】本題考查了相似三角形的性質、等腰三角形的判定與性質、勾股定理以及平行線的性質,解題的關鍵是:(1)利用相似三角形的性質求出OD的值;(2)利用勾股定理求出BE、CD的長度.18、不滿足安全要求,理由見解析.【解析】

在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設計方案不滿足安全要求”.【詳解】解:施工方提供的設計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設計方案不滿足安全要求.19、(4)500;(4)440,作圖見試題解析;(4)4.4.【解析】

(4)利用0.5小時的人數除以其所占比例,即可求出樣本容量;(4)利用樣本容量乘以4.5小時的百分數,即可求出4.5小時的人數,畫圖即可;(4)計算出該市中小學生一天中陽光體育運動的平均時間即可.【詳解】解:(4)由題意可得:0.5小時的人數為:400人,所占比例為:40%,∴本次調查共抽樣了500名學生;(4)4.5小時的人數為:500×4.4=440(人),如圖所示:(4)根據題意得:=4.4,即該市中小學生一天中陽光體育運動的平均時間為4.4小時.考點:4.頻數(率)分布直方圖;4.扇形統(tǒng)計圖;4.加權平均數.20、(1)24.2米(2)超速,理由見解析【解析】

(1)分別在Rt△ADC與Rt△BDC中,利用正切函數,即可求得AD與BD的長,從而求得AB的長.(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.【詳解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽車從A到B用時2秒,∴速度為24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小時,∴該車速度為43.56千米/小時.∵43.56千米/小時大于40千米/小時,∴此校車在AB路段超速.21、電視塔高為米,點的鉛直高度為(米).【解析】

過點P作PF⊥OC,垂足為F,在Rt△OAC中利用三角函數求出OC=100,根據山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函數即可求解.【詳解】過點P作PF⊥OC,垂足為F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA?tan∠OAC=100(米),過點P作PB⊥OA,垂足為B.由i=1:2,設PB=x,則AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【點睛】本題考查了特殊的直角三角形,三角函數的實際應用,中等難度,作出輔助線構造直角三角形并熟練應用三角函數是解題關鍵.22、(1)21人;(2)10人,見解析(3)應從甲抽調1名學生到丙組【解析】(1)參加丙組的人數為21人;(2)21÷10%=10人,則乙組人數=10-21-11=10人,如圖:(3)設需從甲組抽調x名同學到丙組,根據題意得:3(11-x)=21+x解得x=1.答:應從甲抽調1名學生到丙組(1)直接根據條形統(tǒng)計圖獲得數據;(2)根據丙組的21人占總體的10%,即可計算總體人數,然后計算乙組的人數,補全統(tǒng)計圖;(3)設需從甲組抽調x名同學到丙組,根據丙組人數是甲組人數的3倍列方程求解23、(1)每臺電腦0.5萬元,每臺電子白板1.5萬元(2)見解析【解析】解:(1)設每臺電腦x萬元,每臺電子白板y萬元,根據題意得:,解得:。答:每臺電腦0.5萬元,每臺電子白板1.5萬元。(2)設需購進電腦a臺,則購進電子白板(30-a)臺,則,解得:,即a=15,16,17。故共有三種方案:方案一:購進電腦15臺,電子白板15臺.總費用為萬元;方案二:購進電腦16臺,電子白板14臺.總費用為萬元;方案三:購進電腦17臺,電子白板13臺.總費用為萬元?!喾桨溉M用最低。(1)設電腦、電子白板的價格分別為x,y元,根據等量關系:“1臺電腦+2臺電子白板=3.5萬元”,“2臺電腦+1臺電子白板=2.5萬元”,列方程組求解即可。(2)設計方案題一般是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論