版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年天津市東麗區(qū)名校中考聯(lián)考數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一、單選題在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.2.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.123.已知關(guān)于x的不等式ax<b的解為x>-2,則下列關(guān)于x的不等式中,解為x<2的是()A.a(chǎn)x+2<-b+2 B.–ax-1<b-1 C.a(chǎn)x>b D.4.一個不透明的袋中有四張完全相同的卡片,把它們分別標上數(shù)字1、2、3、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率是()A. B. C. D.5.將拋物線向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為()A. B. C. D.6.4的平方根是()A.4 B.±4 C.±2 D.27.如圖,A、B兩點在雙曲線y=上,分別經(jīng)過A、B兩點向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.68.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時間后,到達位于燈塔P的北偏東30°方向上的B處,這時,B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile9.某班為獎勵在學(xué)校運動會上取得好成績的同學(xué),計劃購買甲、乙兩種獎品共20件.其中甲種獎品每件40元,乙種獎品每件30元.如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件.設(shè)購買甲種獎品x件,乙種獎品y件.依題意,可列方程組為()A. B.C. D.10.下列圖形中,主視圖為①的是()A. B. C. D.11.如圖,若數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),用圓規(guī)在數(shù)軸上畫點C,則與點C對應(yīng)的實數(shù)是()A.2 B.3 C.4 D.512.點A(a,3)與點B(4,b)關(guān)于y軸對稱,則(a+b)2017的值為()A.0 B.﹣1 C.1 D.72017二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AD=DF=FB,DE∥FG∥BC,則SⅠ:SⅡ:SⅢ=________.14.如圖,將一個長方形紙條折成如圖的形狀,若已知∠2=55°,則∠1=____.15.已知是整數(shù),則正整數(shù)n的最小值為___16.若一個三角形兩邊的垂直平分線的交點在第三邊上,則這個三角形是_____三角形.17.在?ABCD中,AB=3,BC=4,當?ABCD的面積最大時,下列結(jié)論:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正確的有_________.(填序號)18.已知是一元二次方程的一個根,則方程的另一個根是________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)張老師在黑板上布置了一道題:計算:2(x+1)2﹣(4x﹣5),求當x=和x=﹣時的值.小亮和小新展開了下面的討論,你認為他們兩人誰說的對?并說明理由.20.(6分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當=______時,四邊形BECD是正方形.21.(6分)如圖,拋物線經(jīng)過點A(﹣2,0),點B(0,4).(1)求這條拋物線的表達式;(2)P是拋物線對稱軸上的點,聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點P的坐標;(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點D作DE∥x軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.22.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.23.(8分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.證明:DE為⊙O的切線;連接OE,若BC=4,求△OEC的面積.24.(10分)未成年人思想道德建設(shè)越來越受到社會的關(guān)注,遼陽青少年研究所隨機調(diào)查了本市一中學(xué)100名學(xué)生寒假中花零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費觀.根據(jù)調(diào)查數(shù)據(jù)制成了頻分組頻數(shù)頻率0.5~50.50.150.5~200.2100.5~150.5200.5300.3200.5~250.5100.1率分布表和頻率分布直方圖(如圖).(1)補全頻率分布表;(2)在頻率分布直方圖中,長方形ABCD的面積是;這次調(diào)查的樣本容量是;(3)研究所認為,應(yīng)對消費150元以上的學(xué)生提出勤儉節(jié)約的建議.試估計應(yīng)對該校1000名學(xué)生中約多少名學(xué)生提出這項建議.25.(10分)如圖所示,在中,,(1)用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)(2)連接AP當為多少度時,AP平分.26.(12分)旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.(1)如圖1,當α=60°時,將△AEC繞點A順時針旋轉(zhuǎn)60°到△AFB的位置,連接DF,①求∠DAF的度數(shù);②求證:△ADE≌△ADF;(2)如圖2,當α=90°時,猜想BD、DE、CE的數(shù)量關(guān)系,并說明理由;(3)如圖3,當α=120°,BD=4,CE=5時,請直接寫出DE的長為.27.(12分)如圖,在平面直角坐標系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標;(3)在拋物線上是否存在點E:它關(guān)于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.2、B【解析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關(guān)系;3.等腰三角形的性質(zhì).3、B【解析】∵關(guān)于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項中的不等式.故選B.4、C【解析】【分析】畫樹狀圖展示所有16種等可能的結(jié)果數(shù),再找出兩次抽取的卡片上數(shù)字之積為偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結(jié)果數(shù),其中兩次抽取的卡片上數(shù)字之積為偶數(shù)的結(jié)果數(shù)為12,所以兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率=,故選C.【點睛】本題考查了列表法與樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、D【解析】根據(jù)“左加右減、上加下減”的原則,將拋物線向左平移1個單位所得直線解析式為:;再向下平移3個單位為:.故選D.6、C【解析】
根據(jù)平方根的定義,求數(shù)a的平方根,也就是求一個數(shù)x,使得x1=a,則x就是a的平方根,由此即可解決問題.【詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【點睛】本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根.7、D【解析】
欲求S1+S1,只要求出過A、B兩點向x軸、y軸作垂線段與坐標軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數(shù)k,由此即可求出S1+S1.【詳解】∵點A、B是雙曲線y=上的點,分別經(jīng)過A、B兩點向x軸、y軸作垂線段,
則根據(jù)反比例函數(shù)的圖象的性質(zhì)得兩個矩形的面積都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故選D.8、B【解析】
如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.9、A【解析】
根據(jù)題意設(shè)未知數(shù),找到等量關(guān)系即可解題,見詳解.【詳解】解:設(shè)購買甲種獎品x件,乙種獎品y件.依題意,甲、乙兩種獎品共20件,即x+y=20,購買甲、乙兩種獎品共花費了650元,即40x+30y=650,綜上方程組為,故選A.【點睛】本題考查了二元一次方程組的列式,屬于簡單題,找到等量關(guān)系是解題關(guān)鍵.10、B【解析】分析:主視圖是從物體的正面看得到的圖形,分別寫出每個選項中的主視圖,即可得到答案.詳解:A、主視圖是等腰梯形,故此選項錯誤;B、主視圖是長方形,故此選項正確;C、主視圖是等腰梯形,故此選項錯誤;D、主視圖是三角形,故此選項錯誤;故選B.點睛:此題主要考查了簡單幾何體的主視圖,關(guān)鍵是掌握主視圖所看的位置.11、B【解析】
由數(shù)軸上的點A、B分別與實數(shù)﹣1,1對應(yīng),即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點C對應(yīng)的實數(shù).【詳解】∵數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應(yīng)的實數(shù)是:1+2=3.故選B.【點睛】本題考查了實數(shù)與數(shù)軸,熟記實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系是解決本題的關(guān)鍵.12、B【解析】
根據(jù)關(guān)于y軸對稱的點的縱坐標相等,橫坐標互為相反數(shù),可得答案.【詳解】解:由題意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故選B.【點睛】本題考查了關(guān)于y軸對稱的點的坐標,利用關(guān)于y軸對稱的點的縱坐標相等,橫坐標互為相反數(shù)得出a,b是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1:3:5【解析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD:AF:AB=1:2:3,∴=1:4:9,∴SⅠ:SⅡ:SⅢ=1:3:5.故答案為1:3:5.點睛:本題考查了平行線的性質(zhì)及相似三角形的性質(zhì).相似三角形的面積比等于相似比的平方.14、1【解析】
由折疊可得∠3=180°﹣2∠2,進而可得∠3的度數(shù),然后再根據(jù)兩直線平行,同旁內(nèi)角互補可得∠1+∠3=180°,進而可得∠1的度數(shù).【詳解】解:由折疊可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,故答案為1.15、1【解析】
因為是整數(shù),且,則1n是完全平方數(shù),滿足條件的最小正整數(shù)n為1.【詳解】∵,且是整數(shù),
∴是整數(shù),即1n是完全平方數(shù);
∴n的最小正整數(shù)值為1.
故答案為:1.【點睛】主要考查了二次根式的定義,關(guān)鍵是根據(jù)乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負數(shù)進行解答.16、直角三角形.【解析】
根據(jù)題意,畫出圖形,用垂直平分線的性質(zhì)解答.【詳解】點O落在AB邊上,連接CO,∵OD是AC的垂直平分線,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O(shè)為圓心,以AB為直徑的圓周上,∴∠C是直角.∴這個三角形是直角三角形.【點睛】本題考查線段垂直平分線的性質(zhì),解題關(guān)鍵是準確畫出圖形,進行推理證明.17、①②④【解析】
由當?ABCD的面積最大時,AB⊥BC,可判定?ABCD是矩形,由矩形的性質(zhì),可得②④正確,③錯誤,又由勾股定理求得AC=1.【詳解】∵當?ABCD的面積最大時,AB⊥BC,∴?ABCD是矩形,
∴∠A=∠C=90°,AC=BD,故③錯誤,④正確;∴∠A+∠C=180°;故②正確;∴AC=AB故答案為:①②④.【點睛】此題考查了平行四邊形的性質(zhì)、矩形的判定與性質(zhì)以及勾股定理.注意證得?ABCD是矩形是解此題的關(guān)鍵.18、【解析】
通過觀察原方程可知,常數(shù)項是一未知數(shù),而一次項系數(shù)為常數(shù),因此可用兩根之和公式進行計算,將2-代入計算即可.【詳解】設(shè)方程的另一根為x1,又∵x=2-,由根與系數(shù)關(guān)系,得x1+2-=4,解得x1=2+.故答案為:【點睛】解決此類題目時要認真審題,確定好各系數(shù)的數(shù)值與正負,然后適當選擇一個根與系數(shù)的關(guān)系式求解.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、小亮說的對,理由見解析【解析】
先根據(jù)完全平方公式和去括號法則計算,再合并同類項,最后代入計算即可求解.【詳解】2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,當x=時,原式=+7=7;當x=﹣時,原式=+7=7.故小亮說的對.【點睛】本題考查完全平方公式和去括號,解題的關(guān)鍵是明確完全平方公式和去括號的計算方法.20、(1)詳見解析;(2)菱形;(3)當∠A=45°,四邊形BECD是正方形.【解析】
(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.【詳解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四邊形ADEC為平行四邊形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D為AB中點,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四邊形,∵∠ACB=90°,D是AB中點,∴BD=CD,(斜邊中線等于斜邊一半)∴四邊形BECD是菱形;(3)若D為AB中點,則當∠A=45°時,四邊形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四邊形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四邊形BECD是菱形,∴四邊形BECD是正方形,故答案為45°.【點睛】本題考查了平行四邊形的判定與性質(zhì),菱形的判定、正方形的判定,直角三角形斜邊中線的性質(zhì)等,綜合性較強,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.21、(1);(2)P(1,);(3)3或5.【解析】
(1)將點A、B代入拋物線,用待定系數(shù)法求出解析式.(2)對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐標.(3)新拋物線的表達式為,由題意可得DE=2,過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情況討論點D在y軸的正半軸上和在y軸的負半軸上,可求得m的值為3或5.【詳解】解:(1)∵拋物線經(jīng)過點A(﹣2,0),點B(0,4)∴,解得,∴拋物線解析式為,(2),∴對稱軸為直線x=1,過點P作PG⊥y軸,垂足為G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)設(shè)新拋物線的表達式為則,,DE=2過點F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF∴,∴FH=1.點D在y軸的正半軸上,則,∴,∴,∴m=3,點D在y軸的負半軸上,則,∴,∴,∴m=5,∴綜上所述m的值為3或5.【點睛】本題是二次函數(shù)和相似三角形的綜合題目,整體難度不大,但是非常巧妙,學(xué)會靈活運用是關(guān)鍵.22、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】
(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.23、(1)證明見解析;(2)【解析】試題分析:(1)首先連接OD,CD,由以BC為直徑的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角為30°,可得AD=BD,即可證得OD∥AC,繼而可證得結(jié)論;(2)首先根據(jù)三角函數(shù)的性質(zhì),求得BD,DE,AE的長,然后求得△BOD,△ODE,△ADE以及△ABC的面積,繼而求得答案.試題解析:(1)證明:連接OD,CD,∵BC為⊙O直徑,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵D點在⊙O上,∴DE為⊙O的切線;(2)解:∵∠A=∠B=30°,BC=4,∴CD=BC=2,BD=BC?cos30°=2,∴AD=BD=2,AB=2BD=4,∴S△ABC=AB?CD=×4×2=4,∵DE⊥AC,∴DE=AD=×2=,AE=AD?cos30°=3,∴S△ODE=OD?DE=×2×=,S△ADE=AE?DE=××3=,∵S△BOD=S△BCD=×S△ABC=×4=,∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.24、⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解析】
(1)由頻數(shù)直方圖知組距是50,分組數(shù)列中依次填寫100.5,150.5;0.5-50.5的頻數(shù)=100×0.1=10,由各組的頻率之和等于1可知:100.5-150.5的頻率=1-0.1-0.2-0.3-0.1-0.05=0.25,則頻數(shù)=100×0.25=25,由此填表即可;(2)在頻率分布直方圖中,長方形ABCD的面積為50×0.25=12.5,這次調(diào)查的樣本容量是100;(3)先求得消費在150元以上的學(xué)生的頻率,繼而可求得應(yīng)對該校1000學(xué)生中約多少名學(xué)生提出該項建議..【詳解】解:填表如下:(2)長方形ABCD的面積為0.25,樣本容量是100;提出這項建議的人數(shù)人.【點睛】本題考查了頻數(shù)分布表,樣本估計總體、樣本容量等知識.注意頻數(shù)分布表中總的頻率之和是1.25、(1)詳見解析;(2)30°.【解析】
(1)根據(jù)線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據(jù)等腰三角形的性質(zhì)可得,由角平分線的定義可得,根據(jù)直角三角形兩銳角互余的性質(zhì)即可得∠B的度數(shù),可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點E、F,作直線EF,交BC于點P,∵EF為AB的垂直平分線,∴PA=PB,∴點P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當時,AP平分.【點睛】本題考查尺規(guī)作圖,考查了垂直平分線的性質(zhì)、直角三角形兩銳角互余的性質(zhì)及等腰三角形的性質(zhì),線段垂直平分線上的點到線段兩端的距離相等;熟練掌握垂直平分線的性質(zhì)是解題關(guān)鍵.26、(1)①30°②見解析(2)BD2+CE2=DE2(3)【解析】
(1)①利用旋轉(zhuǎn)的性質(zhì)得出∠FAB=∠CAE,再用角的和即可得出結(jié)論;②利用SAS判斷出△ADE≌△ADF,即可得出結(jié)論;(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結(jié)論;(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,F(xiàn)M,最后用勾股定理即可得出結(jié)論.【詳解】解:(1)①由旋轉(zhuǎn)得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋轉(zhuǎn)知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 光遺傳學(xué)領(lǐng)域的研究行業(yè)市場調(diào)研分析報告
- 平臥式嬰兒車產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 商業(yè)經(jīng)紀行業(yè)市場調(diào)研分析報告
- 分隔層飾盤產(chǎn)品供應(yīng)鏈分析
- 藥用磷酸鹽項目運營指導(dǎo)方案
- 為公司提供外包行政管理行業(yè)相關(guān)項目經(jīng)營管理報告
- 醫(yī)用砷解毒劑產(chǎn)品供應(yīng)鏈分析
- 健康技術(shù)虛擬護理行業(yè)相關(guān)項目經(jīng)營管理報告
- 奶酪熟化奶酪加工服務(wù)行業(yè)相關(guān)項目經(jīng)營管理報告
- 云監(jiān)控和管理行業(yè)經(jīng)營分析報告
- 《納稅籌劃》課件
- 《中國創(chuàng)業(yè)培訓(xùn)》課件
- 我的文檔不想自動發(fā)布的副本11-恢復(fù)1
- 醫(yī)院人文培訓(xùn)課件
- 自動噴水滅火系統(tǒng)故障排查
- 高校新生消防安全培訓(xùn)課件
- 廣東省2024年普通高中學(xué)業(yè)水平合格性考試語文作文導(dǎo)寫
- 律所保密管理制度
- 安全培訓(xùn)考試試題(壓路機操作工)
- 無人機項目投資計劃書
- 漢江臨泛完整版本
評論
0/150
提交評論