云南省昆明市官渡區(qū)六校2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第1頁(yè)
云南省昆明市官渡區(qū)六校2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第2頁(yè)
云南省昆明市官渡區(qū)六校2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第3頁(yè)
云南省昆明市官渡區(qū)六校2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第4頁(yè)
云南省昆明市官渡區(qū)六校2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省昆明市官渡區(qū)六校2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向右平移個(gè)單位2.設(shè),若,則數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.奇數(shù)項(xiàng)遞增,偶數(shù)項(xiàng)遞減的數(shù)列 D.偶數(shù)項(xiàng)遞增,奇數(shù)項(xiàng)遞減的數(shù)列3.已知等差數(shù)列an的前n項(xiàng)和為Sn,若S1=1,A.32 B.54 C.4.要得到函數(shù)y=sin2x-πA.向左平行移動(dòng)π3個(gè)單位 B.向右平行移動(dòng)πC.向右平行移動(dòng)π3個(gè)單位 D.向左平行移動(dòng)π5.一個(gè)不透明袋中裝有大小?質(zhì)地完成相同的四個(gè)球,四個(gè)球上分別標(biāo)有數(shù)字2,3,4,6,現(xiàn)從中隨機(jī)選取三個(gè)球,則所選三個(gè)球上的數(shù)字能構(gòu)成等差數(shù)列(如:??成等差數(shù)列,滿足)的概率是()A. B. C. D.6.在中,若°,°,.則=A. B. C. D.7.法國(guó)學(xué)者貝特朗發(fā)現(xiàn),在研究事件A“在半徑為1的圓內(nèi)隨機(jī)地取一條弦,其長(zhǎng)度超過圓內(nèi)接等邊三角形的邊長(zhǎng)3”的概率的過程中,基于對(duì)“隨機(jī)地取一條弦”的含義的的不同理解,事件A的概率PA存在不同的容案該問題被稱為貝特朗悖論現(xiàn)給出種解釋:若固定弦的一個(gè)端點(diǎn),另個(gè)端點(diǎn)在圓周上隨機(jī)選取,則PA.12 B.13 C.18.已知平面向量與的夾角為,且,則()A. B. C. D.9.已知向量滿足,.O為坐標(biāo)原點(diǎn),.曲線,區(qū)域.若是兩段分離的曲線,則()A. B. C. D.10.已知直線經(jīng)過,兩點(diǎn),則直線的斜率為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)________12.已知角的終邊上一點(diǎn)P的坐標(biāo)為,則____.13.若,點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為.14.已知平行四邊形的周長(zhǎng)為,,則平行四邊形的面積是_______15.觀察下列等式:(1);(2);(3);(4),……請(qǐng)你根據(jù)給定等式的共同特征,并接著寫出一個(gè)具有這個(gè)共同特征的等式(要求與已知等式不重復(fù)),這個(gè)等式可以是__________________.(答案不唯一)16.某班級(jí)有50名學(xué)生,現(xiàn)用系統(tǒng)抽樣的方法從這50名學(xué)生中抽出10名學(xué)生,將這50名學(xué)生隨機(jī)編號(hào)為1~5號(hào),并按編號(hào)順序平均分成10組(1~5號(hào),三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中,底面,,,,分別為的中點(diǎn),為側(cè)棱上的動(dòng)點(diǎn)(Ⅰ)求證:平面平面;(Ⅱ)若為線段的中點(diǎn),求證:平面;(Ⅲ)試判斷直線與平面是否能夠垂直.若能垂直,求的值;若不能垂直,請(qǐng)說明理由18.已知首項(xiàng)為的等比數(shù)列不是遞減數(shù)列,其前n項(xiàng)和為,且成等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的最大項(xiàng)的值與最小項(xiàng)的值.19.某工廠要制造A種電子裝置45臺(tái),B種電子裝置55臺(tái),需用薄鋼板給每臺(tái)裝置配一個(gè)外殼,已知薄鋼板的面積有兩種規(guī)格:甲種薄鋼板每張面積2m2,可做A、B的外殼分別為3個(gè)和5個(gè),乙種薄鋼板每張面積3m2,可做A、B的外殼分別為6個(gè)和6個(gè),求兩種薄鋼板各用多少?gòu)垼拍苁箍偟拿娣e最?。?0.記為數(shù)列的前項(xiàng)和,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)記,求滿足等式的正整數(shù)的值.21.已知,且為第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

根據(jù)三角函數(shù)圖象的平移變換可直接得到圖象變換的過程.【詳解】因?yàn)椋韵蛴移揭苽€(gè)單位即可得到的圖象.故選:D.【點(diǎn)睛】本題考查三角函數(shù)圖象的平移變換,難度較易.注意左右平移時(shí)對(duì)應(yīng)的規(guī)律:左加右減.2、C【解析】

根據(jù)題意,由三角函數(shù)的性質(zhì)分析可得,進(jìn)而可得函數(shù)為減函數(shù),結(jié)合函數(shù)與數(shù)列的關(guān)系分析可得答案。【詳解】根據(jù)題意,,則,指數(shù)函數(shù)為減函數(shù)即即即即,數(shù)列是奇數(shù)項(xiàng)遞增,偶數(shù)項(xiàng)遞減的數(shù)列,故選:C.【點(diǎn)睛】本題涉及數(shù)列的函數(shù)特性,利用函數(shù)單調(diào)性,通過函數(shù)的大小,反推變量的大小,是一道中檔題目。3、C【解析】

利用前n項(xiàng)和Sn的性質(zhì)可求S【詳解】設(shè)Sna+b=116a+4b=16a+8b,故a=1b=0,故S6【點(diǎn)睛】一般地,如果an為等差數(shù)列,Sn為其前(1)若m,n,p,q∈N*,m+n=p+q,則am(2)Sn=n(3)Sn=An(4)Sn4、B【解析】

把y=sin【詳解】由題得y=sin所以要得到函數(shù)y=sin2x-π3的圖象,只要將函數(shù)故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的圖像變換,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.5、B【解析】

用列舉法寫出所有基本事件,確定成等差數(shù)列含有的基本事件,計(jì)數(shù)后可得概率.【詳解】任取3球,結(jié)果有234,236,246,346共4種,其中234,246是成等差數(shù)列的2個(gè)基本事件,∴所求概率為.故選:B.【點(diǎn)睛】本題考查古典概型,解題時(shí)可用列舉法列出所有的基本事件.6、A【解析】∵在△ABC中,A=45°,B=60°,a=2,∴由正弦定理得:.本題選擇A選項(xiàng).7、B【解析】

由幾何概型中的角度型得:P(A)=2π【詳解】設(shè)固定弦的一個(gè)端點(diǎn)為A,則另一個(gè)端點(diǎn)在圓周上BC劣弧上隨機(jī)選取即可滿足題意,則P(A)=2π故選:B.【點(diǎn)睛】本題考查了幾何概型中的角度型,屬于基礎(chǔ)題.8、A【解析】

根據(jù)平面向量數(shù)量積的運(yùn)算法則,將平方運(yùn)算可得結(jié)果.【詳解】∵,∴,∴cos=4,∴,故選A.【點(diǎn)睛】本題考查了利用平面向量的數(shù)量積求模的應(yīng)用問題,考查了數(shù)量積與模之間的轉(zhuǎn)化,是基礎(chǔ)題目.9、A【解析】

由圓的定義及平面向量數(shù)量積的性質(zhì)及其運(yùn)算可得:點(diǎn)P在以O(shè)為圓心,r為半徑的圓上運(yùn)動(dòng)且點(diǎn)P在以Q為圓心,半徑為1和2的圓環(huán)區(qū)域運(yùn)動(dòng),由圖可得解.【詳解】建立如圖所示的平面直角坐標(biāo)系,則,,由,則,即點(diǎn)P在以O(shè)為圓心,r為半徑的圓上運(yùn)動(dòng),又,則點(diǎn)P在以Q為圓心,半徑為1和2的圓環(huán)區(qū)域運(yùn)動(dòng),由圖可知:當(dāng)C∩Ω是兩段分離的曲線時(shí),r的取值范圍為:3<r<5,故選:A.【點(diǎn)睛】本題考查平面向量數(shù)量積的性質(zhì)及其運(yùn)算,利用數(shù)形結(jié)合思想,將向量問題轉(zhuǎn)化為圓與圓的位置關(guān)系問題,考查轉(zhuǎn)化與化歸思想,屬于中等題.10、C【解析】

由兩點(diǎn)法求斜率的公式可直接計(jì)算斜率值.【詳解】直線經(jīng)過,兩點(diǎn),直線的斜率為.【點(diǎn)睛】本題考查用兩點(diǎn)法求直線斜率,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由共軛復(fù)數(shù)的概念得答案.【詳解】由z=i(2﹣i)=1+2i,得.故答案為1﹣2i.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查共軛復(fù)數(shù)的基本概念,是基礎(chǔ)題.12、【解析】

由已知先求,再由三角函數(shù)的定義可得即可得解.【詳解】解:由題意可得點(diǎn)到原點(diǎn)的距離,,由三角函數(shù)的定義可得,,,此時(shí);故答案為.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.13、【解析】試題分析:設(shè),則有,所以,解得,所以.考點(diǎn):平面向量的坐標(biāo)運(yùn)算.14、【解析】

設(shè),根據(jù)條件可以求出,兩邊平方可以得到關(guān)系式,由余弦定理可以表示出,把代入得到的關(guān)系式,聯(lián)立求出的值,過作垂直于,設(shè),則可以表示,利用勾股定理,求出的值,確定長(zhǎng),即求出平行四邊形的面積【詳解】設(shè)又,由余弦定理將代入,得到將(2)代入(1)得到可以解得:(另一種情況不影響結(jié)果),過作垂直于,設(shè),則,所以填寫【點(diǎn)睛】幾何題如果關(guān)系量理清不了,可以嘗試作圖,引入相鄰邊的參數(shù),通過方程把參數(shù)求出,平行四邊形問題可以通過轉(zhuǎn)化變?yōu)槿切螁栴},進(jìn)而把問題簡(jiǎn)單化.15、【解析】

觀察式子特點(diǎn)可知,分子上兩余弦的角的和是,分母上兩個(gè)正弦的角的和是,據(jù)此規(guī)律即可寫出式子【詳解】觀察式子規(guī)律可總結(jié)出一般規(guī)律:,可賦值,得故答案為:【點(diǎn)睛】本題考查歸納推理能力,能找出余角關(guān)系和補(bǔ)角關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題16、33【解析】試題分析:因?yàn)槭菑?0名學(xué)生中抽出10名學(xué)生,組距是5,∵第三組抽取的是13號(hào),∴第七組抽取的為13+4×5=33.考點(diǎn):系統(tǒng)抽樣三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)直線BC1與平面APM不能垂直,詳見解析【解析】

(Ⅰ)由等腰三角形三線合一得;由線面垂直性質(zhì)可得;根據(jù)線面垂直的判定定理知平面;由面面垂直判定定理證得結(jié)論;(Ⅱ)取中點(diǎn),可證得,;利用線面平行判定定理和面面平行判定定理可證得平面平面;根據(jù)面面平行性質(zhì)可證得結(jié)論;(Ⅲ)假設(shè)平面,由線面垂直性質(zhì)可知,利用相似三角形得到,從而解得長(zhǎng)度,可知滿足垂直關(guān)系時(shí),不在棱上,則假設(shè)錯(cuò)誤,可得到結(jié)論.【詳解】(Ⅰ),為中點(diǎn)平面,平面又平面平面,平面又平面平面平面(Ⅱ)取中點(diǎn),連接分別為的中點(diǎn)且四邊形為平行四邊形又平面,平面平面分別為的中點(diǎn)又分別為的中點(diǎn)又平面,平面平面平面,平面平面又平面平面(Ⅲ)假設(shè)平面,由平面得:設(shè),當(dāng)時(shí),∽由已知得:,,,解得:假設(shè)錯(cuò)誤直線與平面不能垂直【點(diǎn)睛】本題考查立體幾何中面面垂直、線面平行關(guān)系的證明、存在性問題的求解;涉及到線面垂直的判定與性質(zhì)、線面平行的判定、面面平行的判定與性質(zhì)定理的應(yīng)用;處理存在性問題時(shí),常采用假設(shè)法,通過假設(shè)成立構(gòu)造方程,判斷是否滿足已知要求,從而得到結(jié)論.18、(1);(2)最大項(xiàng)的值為,最小項(xiàng)的值為【解析】試題分析:(1)根據(jù)成等差數(shù)列,利用等比數(shù)列通項(xiàng)公式和前項(xiàng)和公式,展開.利用等比數(shù)列不是遞減數(shù)列,可得值,進(jìn)而求通項(xiàng).(2)首先根據(jù)(1)得到,進(jìn)而得到,但是等比數(shù)列的公比是負(fù)數(shù),所以分兩種情況:當(dāng)?shù)漠?dāng)n為奇數(shù)時(shí),隨n的增大而減小,所以;當(dāng)n為偶數(shù)時(shí),隨n的增大而增大,所以,然后可判斷最值.試題解析:(1)設(shè)的公比為q.由成等差數(shù)列,得.即,則.又不是遞減數(shù)列且,所以.故.(2)由(1)利用等比數(shù)列的前項(xiàng)和公式,可得得當(dāng)n為奇數(shù)時(shí),隨n的增大而減小,所以,故.當(dāng)n為偶數(shù)時(shí),隨n的增大而增大,所以,故.綜上,對(duì)于,總有,所以數(shù)列最大項(xiàng)的值為,最小值的值為.考點(diǎn):等差中項(xiàng),等比通項(xiàng)公式;數(shù)列增減性的討論求最值.19、甲、乙兩種薄鋼板各5張,能保證制造A、B的兩種外殼的用量,同時(shí)又能使用料總面積最?。窘馕觥?/p>

本題可先將甲種薄鋼板設(shè)為x張,乙種薄鋼板設(shè)為y張,然后根據(jù)題意,得出兩個(gè)不等式關(guān)系,也就是3x+6y≥45、5x+6y≥55以及薄鋼板的總面積是z=2x+3y,然后通過線性規(guī)劃畫出圖像并求出總面積z=2x+3y的最小值,最后得出結(jié)果.【詳解】設(shè)甲種薄鋼板x張,乙種薄鋼板y張,則可做A種產(chǎn)品外殼3x+6y個(gè),B種產(chǎn)品外殼5x+6y個(gè),由題意可得3x+6y≥455x+6y≥55x≥0,y≥0,薄鋼板的總面積是可行域的陰影部分如圖所示,其中l(wèi)1:3x+6y=45、l2:因目標(biāo)函數(shù)z=2x+3y在可行域上的最小值在區(qū)域邊界的A5此時(shí)z的最小值為2×5+3×5=25即甲、乙兩種薄鋼板各5張,能保證制造A、【點(diǎn)睛】(1)利用線性規(guī)劃求目標(biāo)函數(shù)最值的步驟①作圖:畫出約束條件所確定的平面區(qū)域和目標(biāo)函數(shù)所表示的平面直角坐標(biāo)系中的任意一條直線l;②平移:將l平行移動(dòng),以確定最優(yōu)解所對(duì)應(yīng)的點(diǎn)的位置.有時(shí)需要進(jìn)行目標(biāo)函數(shù)l和可行域邊界的斜率的大小比較;③求值:解有關(guān)方程組求出最優(yōu)解的坐標(biāo),再代入目標(biāo)函數(shù),求出目標(biāo)函數(shù)的最值.(2)用線性規(guī)劃解題時(shí)要注意z的幾何意義.20、(1);(2)【解析】

(1)首先利用數(shù)列的遞推關(guān)系式求出數(shù)列的通項(xiàng)公式;(2)先求出,再利用裂項(xiàng)相消法求出數(shù)列的和,解出即可.【詳解】(1)由為數(shù)列的前項(xiàng)和,且滿足.當(dāng)時(shí),,得.當(dāng)時(shí),,得,所以數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,則數(shù)列的通項(xiàng)公式為.(2)由,得由,解得.【點(diǎn)睛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論