2023-2024學年內(nèi)蒙古呼和浩特回民中學中考數(shù)學四模試卷含解析_第1頁
2023-2024學年內(nèi)蒙古呼和浩特回民中學中考數(shù)學四模試卷含解析_第2頁
2023-2024學年內(nèi)蒙古呼和浩特回民中學中考數(shù)學四模試卷含解析_第3頁
2023-2024學年內(nèi)蒙古呼和浩特回民中學中考數(shù)學四模試卷含解析_第4頁
2023-2024學年內(nèi)蒙古呼和浩特回民中學中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年內(nèi)蒙古呼和浩特回民中學中考數(shù)學四模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.為了增強學生體質(zhì),學校發(fā)起評選“健步達人”活動,小明用計步器記錄自己一個月(30天)每天走的步數(shù),并繪制成如下統(tǒng)計表:步數(shù)(萬步)1.01.21.11.41.3天數(shù)335712在每天所走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.42.的算術平方根為()A. B. C. D.3.直線y=3x+1不經(jīng)過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如圖,將繞直角頂點順時針旋轉,得到,連接,若,則的度數(shù)是()A. B. C. D.5.已知數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡|a+b|﹣|c﹣b|的結果是()A.a(chǎn)+b B.﹣a﹣c C.a(chǎn)+c D.a(chǎn)+2b﹣c6.在“朗讀者”節(jié)目的影響下,某中學開展了“好書伴我成長”讀書活動.為了解5月份八年級300名學生讀書情況,隨機調(diào)查了八年級50名學生讀書的冊數(shù),統(tǒng)計數(shù)據(jù)如下表所示:冊數(shù)01234人數(shù)41216171關于這組數(shù)據(jù),下列說法正確的是()A.中位數(shù)是2 B.眾數(shù)是17 C.平均數(shù)是2 D.方差是27.如圖,以O為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π8.已知直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,那么直線y=bx-a一定不經(jīng)過(

)A.第一象限B.第二象限C.第三象限D.第四象限9.如圖,在△ABC中,分別以點A和點C為圓心,大于AC長為半徑畫弧,兩弧相交于點M,N,作直線MN分別交BC,AC于點D,E,若AE=3cm,△ABD的周長為13cm,則△ABC的周長為()A.16cm B.19cm C.22cm D.25cm10.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點A′、B,則k的值是()A.9 B. C. D.311.如圖,實數(shù)﹣3、x、3、y在數(shù)軸上的對應點分別為M、N、P、Q,這四個數(shù)中絕對值最小的數(shù)對應的點是()A.點M B.點N C.點P D.點Q12.如圖,把一個直角三角尺的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=()A.20° B.30° C.40° D.50°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知點A,B的坐標分別為(﹣2,3)、(1,﹣2),將線段AB平移,得到線段A′B′,其中點A與點A′對應,點B與點B′對應,若點A′的坐標為(2,﹣3),則點B′的坐標為________.14.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.15.關于x的一元二次方程x2-2x+m-1=0有兩個相等的實數(shù)根,則m的值為_________16.如圖所示,直線y=x+b交x軸A點,交y軸于B點,交雙曲線于P點,連OP,則OP2﹣OA2=__.17.如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.18.已知點P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數(shù)y=kx+b的圖象上.(1)k的值是;(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數(shù)y=圖象交于C,D兩點(點C在第二象限內(nèi)),過點C作CE⊥x軸于點E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C.求拋物線y=ax2+2x+c的解析式:;點D為拋物線上對稱軸右側、x軸上方一點,DE⊥x軸于點E,DF∥AC交拋物線對稱軸于點F,求DE+DF的最大值;①在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由;②點Q在拋物線對稱軸上,其縱坐標為t,請直接寫出△ACQ為銳角三角形時t的取值范圍.20.(6分)某商店銷售兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需280元;購買3個A品牌和1個B品牌的計算器共需210元.(Ⅰ)求這兩種品牌計算器的單價;(Ⅱ)開學前,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的九折銷售,B品牌計算器10個以上超出部分按原價的七折銷售.設購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1,y2關于x的函數(shù)關系式.(Ⅲ)某校準備集體購買同一品牌的計算器,若購買計算器的數(shù)量超過15個,購買哪種品牌的計算器更合算?請說明理由.21.(6分)如圖,拋物線與x軸交于點A,B,與軸交于點C,過點C作CD∥x軸,交拋物線的對稱軸于點D,連結BD,已知點A坐標為(-1,0).求該拋物線的解析式;求梯形COBD的面積.22.(8分)如圖1所示,點E在弦AB所對的優(yōu)弧上,且BE為半圓,C是BE上的動點,連接CA、CB,已知AB=4cm,設B、C間的距離為xcm,點C到弦AB所在直線的距離為y1cm,A、C兩點間的距離為y2cm.小明根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)y1、y2歲自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整.按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(x,y1),(x,y2),并畫出函數(shù)y1、y2的圖象;結合函數(shù)圖象,解決問題:①連接BE,則BE的長約為cm.②當以A、B、C為頂點組成的三角形是直角三角形時,BC的長度約為cm.23.(8分)如圖,在矩形ABCD的外側,作等邊三角形ADE,連結BE,CE,求證:BE=CE.24.(10分)如今,旅游度假成為了中國人慶祝傳統(tǒng)春節(jié)的一項的“新年俗”,山西省旅發(fā)委發(fā)布的《2018年“春節(jié)”假日旅游市場總結分析報告》中稱:山西春節(jié)旅游供需兩旺,實現(xiàn)了“旅游接待”與“經(jīng)濟效益”的雙豐收,請根據(jù)圖表信息解決問題:(1)如圖1所示,山西近五年春節(jié)假日接待海內(nèi)外游客的數(shù)量逐年增加,2018年首次突破了“千萬”大關,達到萬人次,比2017年春節(jié)假日增加萬人次.(2)2018年2月15日﹣20日期間,山西省35個重點景區(qū)每日接待游客數(shù)量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客數(shù)量(萬人次)7.5682.83119.5184.38103.2151.55這組數(shù)據(jù)的中位數(shù)是萬人次.(3)根據(jù)圖2中的信息預估:2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為,理由是.(4)春節(jié)期間,小明在“青龍古鎮(zhèn)第一屆新春廟會”上購買了A,B,C,D四枚書簽(除圖案外完全相同).正面分別印有“剪紙藝術”、“國粹京劇”、“陶瓷藝術”、“皮影戲”的圖案(如圖3),他將書簽背面朝上放在桌面上,從中隨機挑選兩枚送給好朋友,求送給好朋友的兩枚書簽中恰好有“剪紙藝術”的概率.25.(10分)(定義)如圖1,A,B為直線l同側的兩點,過點A作直線1的對稱點A′,連接A′B交直線l于點P,連接AP,則稱點P為點A,B關于直線l的“等角點”.(運用)如圖2,在平面直坐標系xOy中,已知A(2,3),B(﹣2,﹣3)兩點.(1)C(4,32),D(4,22),E(4,12(2)若直線l垂直于x軸,點P(m,n)是點A,B關于直線l的等角點,其中m>2,∠APB=α,求證:tanα2=n(3)若點P是點A,B關于直線y=ax+b(a≠0)的等角點,且點P位于直線AB的右下方,當∠APB=60°時,求b的取值范圍(直接寫出結果).26.(12分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.求證:CD∥AB;填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.27.(12分)如圖,兩座建筑物的水平距離為.從點測得點的仰角為53°,從點測得點的俯角為37°,求兩座建筑物的高度(參考數(shù)據(jù):

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,得到這組數(shù)據(jù)的眾數(shù);把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個數(shù)的平均數(shù)是中位數(shù).【詳解】在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,即眾數(shù)是1.1.要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個兩個數(shù)都是1.1,所以中位數(shù)是1.1.故選B.【點睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.2、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術平方根即可.詳解:∵=2,而2的算術平方根是,∴的算術平方根是,故選B.點睛:此題主要考查了算術平方根的定義,解題時應先明確是求哪個數(shù)的算術平方根,否則容易出現(xiàn)選A的錯誤.3、D【解析】

利用兩點法可畫出函數(shù)圖象,則可求得答案.【詳解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直線與x軸交于點(-,0),與y軸交于點(0,1),其函數(shù)圖象如圖所示,∴函數(shù)圖象不過第四象限,故選:D.【點睛】本題主要考查一次函數(shù)的性質(zhì),正確畫出函數(shù)圖象是解題的關鍵.4、B【解析】

根據(jù)旋轉的性質(zhì)可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CAA′=45°,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠A′B′C,最后根據(jù)旋轉的性質(zhì)可得∠B=∠A′B′C.【詳解】解:∵Rt△ABC繞直角頂點C順時針旋轉90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故選B.【點睛】本題考查了旋轉的性質(zhì),等腰直角三角形的判定與性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關鍵.5、C【解析】

首先根據(jù)數(shù)軸可以得到a、b、c的取值范圍,然后利用絕對值的定義去掉絕對值符號后化簡即可.【詳解】解:通過數(shù)軸得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案為a+c.故選A.6、A【解析】試題解析:察表格,可知這組樣本數(shù)據(jù)的平均數(shù)為:(0×4+1×12+2×16+3×17+4×1)÷50=;∵這組樣本數(shù)據(jù)中,3出現(xiàn)了17次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是3;∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是2,∴這組數(shù)據(jù)的中位數(shù)為2,故選A.考點:1.方差;2.加權平均數(shù);3.中位數(shù);4.眾數(shù).7、C【解析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.8、D【解析】

根據(jù)直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,可以判斷a、b的正負,從而可以判斷直線y=bx-a經(jīng)過哪幾個象限,不經(jīng)過哪個象限,本題得以解決.【詳解】∵直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,∴a<0,b>0,∴直線y=bx-a經(jīng)過第一、二、三象限,不經(jīng)過第四象限,故選D.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.9、B【解析】

根據(jù)作法可知MN是AC的垂直平分線,利用垂直平分線的性質(zhì)進行求解即可得答案.【詳解】解:根據(jù)作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長=AB+BD+BC+AC=13+6=19cm,故選B.【點睛】本題考查作圖-基本作圖,線段的垂直平分線的性質(zhì)等知識,解題的關鍵是熟練掌握線段的垂直平分線的性質(zhì).10、C【解析】

設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質(zhì)k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數(shù)綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數(shù)點的坐標特征、相似三角形、翻折等,解題關鍵是通過設點B的坐標,表示出點A′的坐標.11、D【解析】∵實數(shù)-3,x,3,y在數(shù)軸上的對應點分別為M、N、P、Q,

∴原點在點M與N之間,

∴這四個數(shù)中絕對值最大的數(shù)對應的點是點Q.

故選D.12、C【解析】

由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°?50°=40°.故選C.【點睛】本題主要考查平行線的性質(zhì),熟悉掌握性質(zhì)是關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(5,﹣8)【解析】

各對應點之間的關系是橫坐標加4,縱坐標減6,那么讓點B的橫坐標加4,縱坐標減6即為點B′的坐標.【詳解】由A(-2,3)的對應點A′的坐標為(2,-13),坐標的變化規(guī)律可知:各對應點之間的關系是橫坐標加4,縱坐標減6,∴點B′的橫坐標為1+4=5;縱坐標為-2-6=-8;即所求點B′的坐標為(5,-8).故答案為(5,-8)【點睛】此題主要考查了坐標與圖形的變化-平移,解決本題的關鍵是根據(jù)已知對應點找到各對應點之間的變化規(guī)律.14、或【解析】分析:依據(jù)△DCM為直角三角形,需要分兩種情況進行討論:當∠CDM=90°時,△CDM是直角三角形;當∠CMD=90°時,△CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到折痕MN的長.詳解:分兩種情況:①如圖,當∠CDM=90°時,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當∠CMD=90°時,△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質(zhì),正確的作出圖形是解題的關鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.15、2.【解析】試題分析:已知方程x2-2x=0有兩個相等的實數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.16、1【解析】解:∵直線y=x+b與雙曲線(x>0)交于點P,設P點的坐標(x,y),∴x﹣y=﹣b,xy=8,而直線y=x+b與x軸交于A點,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案為1.17、48°【解析】

連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結合圖形計算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關計算,掌握正多邊形的中心角的計算公式是解題的關鍵.18、(1)-2;(2)【解析】

(1)設點P的坐標為(m,n),則點Q的坐標為(m?1,n+2),依題意得:,解得:k=?2.故答案為?2.(2)∵BO⊥x軸,CE⊥x軸,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函數(shù)y=?2x+b中x=0,則y=b,∴BO=b;令一次函數(shù)y=?2x+b中y=0,則0=?2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE?AO=.∵OE?CE=|?4|=4,即=4,解得:b=,或b=?(舍去).故答案為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+2x+3;(2)DE+DF有最大值為;(3)①存在,P的坐標為(,)或(,);②<t<.【解析】

(1)設拋物線解析式為y=a(x+1)(x﹣3),根據(jù)系數(shù)的關系,即可解答(2)先求出當x=0時,C的坐標,設直線AC的解析式為y=px+q,把A,C的坐標代入即可求出AC的解析式,過D作DG垂直拋物線對稱軸于點G,設D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①過點C作AC的垂線交拋物線于另一點P1,求出直線PC的解析式,再結合拋物線的解析式可求出P1,過點A作AC的垂線交拋物線于另一點P2,再利用A的坐標求出P2,即可解答②觀察函數(shù)圖象與△ACQ為銳角三角形時的情況,即可解答【詳解】解:(1)設拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;(2)當x=0時,y=﹣x2+2x+3=3,則C(0,3),設直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3,如答圖1,過D作DG垂直拋物線對稱軸于點G,設D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知拋物線對稱軸為x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴當x=,DE+DF有最大值為;答圖1答圖2(3)①存在;如答圖2,過點C作AC的垂線交拋物線于另一點P1,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設為y=x+m,把C(0,3)代入得m=3,∴直線P1C的解析式為y=x+3,解方程組,解得或,則此時P1點坐標為(,);過點A作AC的垂線交拋物線于另一點P2,直線AP2的解析式可設為y=x+n,把A(﹣1,0)代入得n=,∴直線PC的解析式為y=,解方程組,解得或,則此時P2點坐標為(,),綜上所述,符合條件的點P的坐標為(,)或(,);②<t<.【點睛】此題考查二次函數(shù)綜合題,解題關鍵在于把已知點代入解析式求值和作輔助線.20、(1)A種品牌計算器50元/個,B種品牌計算器60元/個;(2)y1=45x,y2=;(3)詳見解析.【解析】

(1)根據(jù)題意列出二元一次方程組并求解即可;(2)按照“購買所需費用=折扣×單價×數(shù)量”列式即可,注意B品牌計算器的采購要分0≤x≤10和x>10兩種情況考慮;(3)根據(jù)上問所求關系式,分別計算當x>15時,由y1=y2、y1>y2、y1<y2確定其分別對應的銷量范圍,從而確定方案.【詳解】(Ⅰ)設A、B兩種品牌的計算器的單價分別為a元、b元,根據(jù)題意得,,解得:,答:A種品牌計算器50元/個,B種品牌計算器60元/個;(Ⅱ)A品牌:y1=50x?0.9=45x;B品牌:①當0≤x≤10時,y2=60x,②當x>10時,y2=10×60+60×(x﹣10)×0.7=42x+180,綜上所述:y1=45x,y2=;(Ⅲ)當y1=y2時,45x=42x+180,解得x=60,即購買60個計算器時,兩種品牌都一樣;當y1>y2時,45x>42x+180,解得x>60,即購買超過60個計算器時,B品牌更合算;當y1<y2時,45x<42x+180,解得x<60,即購買不足60個計算器時,A品牌更合算,當購買數(shù)量為15時,顯然購買A品牌更劃算.【點睛】本題考查了二元一次方程組的應用.21、(1)(2)【解析】

(1)將A坐標代入拋物線解析式,求出a的值,即可確定出解析式.(2)拋物線解析式令x=0求出y的值,求出OC的長,根據(jù)對稱軸求出CD的長,令y=0求出x的值,確定出OB的長,根據(jù)梯形面積公式即可求出梯形COBD的面積.【詳解】(1)將A(―1,0)代入中,得:0=4a+4,解得:a=-1.∴該拋物線解析式為.(2)對于拋物線解析式,令x=0,得到y(tǒng)=2,即OC=2,∵拋物線的對稱軸為直線x=1,∴CD=1.∵A(-1,0),∴B(2,0),即OB=2.∴.22、(1)詳見解析;(2)詳見解析;(3)①6;②6或4.1.【解析】

(1)由題意得出BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,由勾股定理得出BD=BC2-CD2≈0.9367(cm),得出AD=AB(2)描出補全后的表中各組數(shù)值所對應的點(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象即可;(3)①∵BC=6時,CD=AC=4.1,即點C與點E重合,CD與AC重合,BC為直徑,得出BE=BC=6即可;②分兩種情況:當∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6;當∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6,由圖象可得:BC=4.1.【詳解】(1)由表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應值知:BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,如圖1所示:∵CD⊥AB,∴BD=BC2-∴AD=AB+BD=4+0.9367=4.9367(cm),∴AC=CD2補充完整如下表:(2)描出補全后的表中各組數(shù)值所對應的點(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象如圖2所示:(3)①∵BC=6cm時,CD=AC=4.1cm,即點C與點E重合,CD與AC重合,BC為直徑,∴BE=BC=6cm,故答案為:6;②以A、B、C為頂點組成的三角形是直角三角形時,分兩種情況:當∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6cm;當∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6cm,由圖象可得:BC=4.1cm;綜上所述:BC的長度約為6cm或4.1cm;故答案為:6或4.1.【點睛】本題是圓的綜合題目,考查了勾股定理、探究試驗、函數(shù)以及圖象、圓的對稱性、直角三角形的性質(zhì)、分類討論等知識;本題綜合性強,理解探究試驗、看懂圖象是解題的關鍵.23、證明見解析.【解析】

要證明BE=CE,只要證明△EAB≌△EDC即可,根據(jù)題意目中的條件,利用矩形的性質(zhì)和等邊三角形的性質(zhì)可以得到兩個三角形全等的條件,從而可以解答本題.【詳解】證明:∵四邊形ABCD是矩形,∴AB=CD,∠BAD=∠CDA=90°,∵△ADE是等邊三角形,∴AE=DE,∠EAD=∠EDA=60°,∴∠EAD=∠EDC,在△EAB和△EDC中,EA=∴△EAB≌△EDC(SAS),∴BE=CE.【點睛】本題考查矩形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.24、(1)1365.45、414.4(2)93.79(3)30%;近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%(4)【解析】

(1)由圖1可得答案;(2)根據(jù)中位數(shù)的定義求解可得;(3)由近3年平均漲幅在30%左右即可做出估計;(4)根據(jù)題意先畫出樹狀圖,得出共有12種等可能的結果數(shù),再利用概率公式求解可得.【詳解】(1)2018年首次突破了“千萬”大關,達到1365.45萬人次,比2017年春節(jié)假日增加1365.45﹣951.05=414.4萬人次.故答案為:1365.45、414.4;(2)這組數(shù)據(jù)的中位數(shù)是=93.79萬人次,故答案為:93.79;(3)2019年春節(jié)假日山西旅游總收入比2018年同期增長的百分率約為30%,理由是:近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%,故答案為:30%;近3年平均漲幅在30%左右,估計2019年比2018年同比增長約30%.(4)畫樹狀圖如下:則共有12種等可能的結果數(shù),其中送給好朋友的兩枚書簽中恰好有“剪紙藝術”的結果數(shù)為6,所以送給好朋友的兩枚書簽中恰好有“剪紙藝術”的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率,也考查了條形統(tǒng)計圖與樣本估計總體.25、(1)C(2)n2(3)b<﹣735且b≠﹣2【解析】

(1)先求出B關于直線x=4的對稱點B′的坐標,根據(jù)A、B′的坐標可得直線AB′的解析式,把x=4代入求出P點的縱坐標即可得答案;(2)如圖:過點A作直線l的對稱點A′,連A′B′,交直線l于點P,作BH⊥l于點H,根據(jù)對稱性可知∠APG=A′PG,由∠AGP=∠BHP=90°可證明△AGP∽△BHP,根據(jù)相似三角形對應邊成比例可得m=2根據(jù)外角性質(zhì)可知∠A=∠A′=α2根據(jù)對稱性質(zhì)可證明△ABQ是等邊三角形,即點Q為定點,若直線y=ax+b(a≠0)與圓相切,易得P、Q重合,所以直線y=ax+b(a≠0)過定點Q,連OQ,過點A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N,可證明△AMO∽△ONQ,根據(jù)相似三角形對應邊成比例可得ON、NQ的長,即可得Q點坐標,根據(jù)A、B、Q的坐標可求出直線AQ、BQ的解析式,根據(jù)P與A、B重合時b的值求出b的取值范圍即可.【詳解】(1)點B關于直線x=4的對稱點為B′(10,﹣3),∴直線AB′解析式為:y=﹣34當x=4時,y=32故答案為:C(2)如圖,過點A作直線l的對稱點A′,連A′B′,交直線l于點P作BH⊥l于點H∵點A和A′關于直線l對稱∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴AGBH=GP∴mn=23,即m=23∵∠APB=α,AP=AP′,∴∠A=∠A′=α2在Rt△AGP中,tanα2=(3)如圖,當點P位于直線AB的右下方,∠APB=60°時,點P在以AB為弦,所對圓周為60°,且圓心在AB下方若直線y=ax+b(a≠0)與圓相交,設圓與直線y=ax+b(a≠0)的另一個交點為Q由對稱性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論