版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省福州馬尾區(qū)四校聯(lián)考2024屆中考二模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長(zhǎng)是16cm,那么四邊形ABFD的周長(zhǎng)是(
)A.16cm B.18cm C.20cm D.21cm2.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④3.如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(﹣1,2),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結(jié)論:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點(diǎn)A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°5.估算的值在(
)A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間6.如圖,從正方形紙片的頂點(diǎn)沿虛線剪開,則∠1的度數(shù)可能是()A.44 B.45 C.46 D.477.如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為()A.8 B.8 C.4 D.68.如圖,點(diǎn)E是四邊形ABCD的邊BC延長(zhǎng)線上的一點(diǎn),則下列條件中不能判定AD∥BE的是()A. B. C. D.9.如圖所示是放置在正方形網(wǎng)格中的一個(gè),則的值為()A. B. C. D.10.如圖,內(nèi)接于,若,則A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如果一個(gè)正多邊形的中心角為72°,那么這個(gè)正多邊形的邊數(shù)是.12.比較大?。?1.(填“>”,“<”或“=”)13.比較大?。?_________(填<,>或=).14.已知關(guān)于x的一元二次方程kx2+3x﹣4k+6=0有兩個(gè)相等的實(shí)數(shù)根,則該實(shí)數(shù)根是_____.15.如圖,四邊形ABCD是菱形,∠DAB=50°,對(duì)角線AC,BD相交于點(diǎn)O,DH⊥AB于H,連接OH,則∠DHO=_____度.16.如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn).若四邊形EFGH為菱形,則對(duì)角線AC、BD應(yīng)滿足條件_____.三、解答題(共8題,共72分)17.(8分)給定關(guān)于x的二次函數(shù)y=kx2﹣4kx+3(k≠0),當(dāng)該二次函數(shù)與x軸只有一個(gè)公共點(diǎn)時(shí),求k的值;當(dāng)該二次函數(shù)與x軸有2個(gè)公共點(diǎn)時(shí),設(shè)這兩個(gè)公共點(diǎn)為A、B,已知AB=2,求k的值;由于k的變化,該二次函數(shù)的圖象性質(zhì)也隨之變化,但也有不會(huì)變化的性質(zhì),某數(shù)學(xué)學(xué)習(xí)小組在探究時(shí)得出以下結(jié)論:①與y軸的交點(diǎn)不變;②對(duì)稱軸不變;③一定經(jīng)過兩個(gè)定點(diǎn);請(qǐng)判斷以上結(jié)論是否正確,并說明理由.18.(8分)如圖,已知,.求證.19.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點(diǎn)F,點(diǎn)E在AB的延長(zhǎng)線上,射線EM經(jīng)過點(diǎn)C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號(hào)).20.(8分)解不等式組:,并把解集在數(shù)軸上表示出來。21.(8分)已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點(diǎn)A落在對(duì)角線DB上的點(diǎn)F處,折痕為DE,打開矩形紙片,并連接EF.的長(zhǎng)為多少;求AE的長(zhǎng);在BE上是否存在點(diǎn)P,使得的值最?。咳舸嬖?,請(qǐng)你畫出點(diǎn)P的位置,并求出這個(gè)最小值;若不存在,請(qǐng)說明理由.22.(10分)化簡(jiǎn)(),并說明原代數(shù)式的值能否等于-1.23.(12分)計(jì)算:÷+8×2﹣1﹣(+1)0+2?sin60°.24.閱讀下列材料:題目:如圖,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,請(qǐng)用sinA、cosA表示sin2A.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:已知,△ABE向右平移2cm得到△DCF,根據(jù)平移的性質(zhì)得到EF=AD=2cm,AE=DF,又因△ABE的周長(zhǎng)為16cm,所以AB+BC+AC=16cm,則四邊形ABFD的周長(zhǎng)=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案選C.考點(diǎn):平移的性質(zhì).2、C【解析】∵二次函數(shù)的圖象的開口向上,∴a>0。∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的負(fù)半軸上,∴c<0。∵二次函數(shù)圖象的對(duì)稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確。∵1a﹣b=1a﹣1a=0,因此說法②正確。∵二次函數(shù)y=∴圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo)是(1,0)。∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯(cuò)誤?!叨魏瘮?shù)y=∴點(diǎn)(﹣5,y1)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)的坐標(biāo)是(3,y1),∵當(dāng)x>﹣1時(shí),y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。3、C【解析】
首先根據(jù)拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點(diǎn)中,﹣2<x1<﹣1、0<x2<1說明拋物線的對(duì)稱軸在﹣1~0之間,即x=﹣>﹣1,可根據(jù)這些條件以及函數(shù)圖象上一些特殊點(diǎn)的坐標(biāo)來進(jìn)行判斷【詳解】由圖知:拋物線的開口向下,則a<0;拋物線的對(duì)稱軸x=﹣>﹣1,且c>0;①由圖可得:當(dāng)x=﹣2時(shí),y<0,即4a﹣2b+c<0,故①正確;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;③拋物線對(duì)稱軸位于y軸的左側(cè),則a、b同號(hào),又c>0,故abc>0,所以③不正確;④由于拋物線的對(duì)稱軸大于﹣1,所以拋物線的頂點(diǎn)縱坐標(biāo)應(yīng)該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;因此正確的結(jié)論是①②④.故選:C.【點(diǎn)睛】本題主要考查對(duì)二次函數(shù)圖象與系數(shù)的關(guān)系,拋物線與x軸的交點(diǎn),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征等知識(shí)點(diǎn)的理解和掌握,能根據(jù)圖象確定與系數(shù)有關(guān)的式子的正負(fù)是解此題的關(guān)鍵.4、A【解析】
如圖,過點(diǎn)C作CD∥a,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】如圖,過點(diǎn)C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關(guān)鍵.5、C【解析】
由可知56,即可解出.【詳解】∵∴56,故選C.【點(diǎn)睛】此題主要考查了無(wú)理數(shù)的估算,掌握無(wú)理數(shù)的估算是解題的關(guān)鍵.6、A【解析】
連接正方形的對(duì)角線,然后依據(jù)正方形的性質(zhì)進(jìn)行判斷即可.【詳解】解:如圖所示:∵四邊形為正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故選:A.【點(diǎn)睛】本題主要考查的是正方形的性質(zhì),熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.7、D【解析】分析:連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對(duì)等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計(jì)算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點(diǎn)睛:本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),直角三角形30°角所對(duì)的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關(guān)鍵.8、A【解析】
利用平行線的判定方法判斷即可得到結(jié)果.【詳解】∵∠1=∠2,∴AB∥CD,選項(xiàng)A符合題意;∵∠3=∠4,∴AD∥BC,選項(xiàng)B不合題意;∵∠D=∠5,∴AD∥BC,選項(xiàng)C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項(xiàng)D不合題意,故選A.【點(diǎn)睛】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關(guān)鍵.9、D【解析】
首先過點(diǎn)A向CB引垂線,與CB交于D,表示出BD、AD的長(zhǎng),根據(jù)正切的計(jì)算公式可算出答案.【詳解】解:過點(diǎn)A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點(diǎn)睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.10、B【解析】
根據(jù)圓周角定理求出,根據(jù)三角形內(nèi)角和定理計(jì)算即可.【詳解】解:由圓周角定理得,,,,故選:B.【點(diǎn)睛】本題考查的是三角形的外接圓與外心,掌握?qǐng)A周角定理、等腰三角形的性質(zhì)、三角形內(nèi)角和定理是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、5【解析】試題分析:中心角的度數(shù)=,考點(diǎn):正多邊形中心角的概念.12、>【解析】試題分析:根據(jù)二次根式的性質(zhì)可知,被開方數(shù)越大,所對(duì)應(yīng)的二次根式就越大,因此可判斷2與1=1的大小為2>1.考點(diǎn):二次根式的大小比較13、<【解析】【分析】根據(jù)實(shí)數(shù)大小比較的方法進(jìn)行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點(diǎn)睛】本題考查了實(shí)數(shù)大小的比較,熟練掌握實(shí)數(shù)大小比較的方法是解題的關(guān)鍵.14、﹣1【解析】
根據(jù)二次項(xiàng)系數(shù)非零結(jié)合根的判別式△=0,即可得出關(guān)于k的一元一次不等式及一元二次方程,解之即可得出k值,將其代入原方程中解之即可得出原方程的解.【詳解】解:∵關(guān)于x的一元二次方程kx1+3x-4k+6=0有兩個(gè)相等的實(shí)數(shù)根,∴,解得:k=,∴原方程為x1+4x+4=0,即(x+1)1=0,解得:x=-1.故答案為:-1.【點(diǎn)睛】本題考查根的判別式、一元二次方程的定義以及配方法解一元二次方程,牢記“當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根”是解題的關(guān)鍵.15、1.【解析】試題分析:∵四邊形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=×50°=1°.考點(diǎn):菱形的性質(zhì).16、AC=BD.【解析】試題分析:添加的條件應(yīng)為:AC=BD,把AC=BD作為已知條件,根據(jù)三角形的中位線定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根據(jù)等量代換和平行于同一條直線的兩直線平行,得到HG和EF平行且相等,所以EFGH為平行四邊形,又EH等于BD的一半且AC=BD,所以得到所證四邊形的鄰邊EH與HG相等,所以四邊形EFGH為菱形.試題解析:添加的條件應(yīng)為:AC=BD.證明:∵E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點(diǎn),∴在△ADC中,HG為△ADC的中位線,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,則HG∥EF且HG=EF,∴四邊形EFGH為平行四邊形,又AC=BD,所以EF=EH,∴四邊形EFGH為菱形.考點(diǎn):1.菱形的性質(zhì);2.三角形中位線定理.三、解答題(共8題,共72分)17、(1)(2)1(3)①②③【解析】
(1)由拋物線與x軸只有一個(gè)交點(diǎn),可知△=0;(2)由拋物線與x軸有兩個(gè)交點(diǎn)且AB=2,可知A、B坐標(biāo),代入解析式,可得k值;(3)通過解析式求出對(duì)稱軸,與y軸交點(diǎn),并根據(jù)系數(shù)的關(guān)系得出判斷.【詳解】(1)∵二次函數(shù)y=kx2﹣4kx+3與x軸只有一個(gè)公共點(diǎn),∴關(guān)于x的方程kx2﹣4kx+3=0有兩個(gè)相等的實(shí)數(shù)根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=,k≠0,∴k=;(2)∵AB=2,拋物線對(duì)稱軸為x=2,∴A、B點(diǎn)坐標(biāo)為(1,0),(3,0),將(1,0)代入解析式,可得k=1,(3)①∵當(dāng)x=0時(shí),y=3,∴二次函數(shù)圖象與y軸的交點(diǎn)為(0,3),①正確;②∵拋物線的對(duì)稱軸為x=2,∴拋物線的對(duì)稱軸不變,②正確;③二次函數(shù)y=kx2﹣4kx+3=k(x2﹣4x)+3,將其看成y關(guān)于k的一次函數(shù),令k的系數(shù)為0,即x2﹣4x=0,解得:x1=0,x2=4,∴拋物線一定經(jīng)過兩個(gè)定點(diǎn)(0,3)和(4,3),③正確.綜上可知:正確的結(jié)論有①②③.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),與x、y軸的交點(diǎn)問題,對(duì)稱軸問題,以及系數(shù)與圖象的關(guān)系問題,是一道很好的綜合問題.18、見解析【解析】
根據(jù)∠ABD=∠DCA,∠ACB=∠DBC,求證∠ABC=∠DCB,然后利用AAS可證明△ABC≌△DCB,即可證明結(jié)論.【詳解】證明:∵∠ABD=∠DCA,∠DBC=∠ACB
∴∠ABD+∠DBC=∠DCA+∠ACB
即∠ABC=∠DCB
在△ABC和△DCB中
∴△ABC≌△DCB(ASA)
∴AB=DC【點(diǎn)睛】本題主要考查學(xué)生對(duì)全等三角形的判定與性質(zhì)的理解和掌握,證明此題的關(guān)鍵是求證△ABC≌△DCB.難度不大,屬于基礎(chǔ)題.19、(1)詳見解析;(2);【解析】
(1)連接OC,根據(jù)垂直的定義得到∠AOF=90°,根據(jù)三角形的內(nèi)角和得到∠ACE=90°+∠A,根據(jù)等腰三角形的性質(zhì)得到∠OCE=90°,得到OC⊥CE,于是得到結(jié)論;
(2)根據(jù)圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】:(1)連接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=180°,
∴∠ACE=90°+∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
∴∠OCE=90°,
∴OC⊥CE,
∴EM是⊙O的切線;
(2)∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
∴∠ACO=∠BCE,
∵∠A=∠E,
∴∠A=∠ACO=∠BCE=∠E,
∴∠ABC=∠BCO+∠E=2∠A,
∴∠A=30°,
∴∠BOC=60°,
∴△BOC是等邊三角形,
∴OB=BC=,
∴陰影部分的面積=,【點(diǎn)睛】本題考查了切線的判定,等腰三角形的判定和性質(zhì),扇形的面積計(jì)算,連接OC是解題的關(guān)鍵.20、,解集在數(shù)軸上表示見解析【解析】試題分析:先解不等式組中的每一個(gè)不等式,得到不等式組的解集,再把不等式的解集表示在數(shù)軸上即可.試題解析:由①得:由②得:∴不等式組的解集為:解集在數(shù)軸上表示為:21、(1);(2)的長(zhǎng)為;(1)存在,畫出點(diǎn)P的位置如圖1見解析,的最小值為
.【解析】
(1)根據(jù)勾股定理解答即可;(2)設(shè)AE=x,根據(jù)全等三角形的性質(zhì)和勾股定理解答即可;(1)延長(zhǎng)CB到點(diǎn)G,使BG=BC,連接FG,交BE于點(diǎn)P,連接PC,利用相似三角形的判定和性質(zhì)解答即可.【詳解】(1)∵矩形ABCD,∴∠DAB=90°,AD=BC=1.在Rt△ADB中,DB.故答案為5;(2)設(shè)AE=x.∵AB=4,∴BE=4﹣x,在矩形ABCD中,根據(jù)折疊的性質(zhì)知:Rt△FDE≌Rt△ADE,∴FE=AE=x,F(xiàn)D=AD=BC=1,∴BF=BD﹣FD=5﹣1=2.在Rt△BEF中,根據(jù)勾股定理,得FE2+BF2=BE2,即x2+4=(4﹣x)2,解得:x,∴AE的長(zhǎng)為;(1)存在,如圖1,延長(zhǎng)CB到點(diǎn)G,使BG=BC,連接FG,交BE于點(diǎn)P,連接PC,則點(diǎn)P即為所求,此時(shí)有:PC=PG,∴PF+PC=GF.過點(diǎn)F作FH⊥BC,交BC于點(diǎn)H,則有FH∥DC,∴△BF
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度建筑模板研發(fā)與技術(shù)支持合同4篇
- 臨時(shí)工勞動(dòng)合同范本(2024版)
- 中醫(yī)承師合同模板
- 2025版外貿(mào)鞋子購(gòu)銷合同模板:品牌設(shè)計(jì)合作協(xié)議3篇
- 2025年度汽車維修行業(yè)深度合作框架協(xié)議
- 二零二五年度解除租賃合同及約定租賃物租賃期限變更協(xié)議
- 二零二五年度洗車行業(yè)培訓(xùn)與認(rèn)證協(xié)議
- 2025年度市政基礎(chǔ)設(shè)施竣工驗(yàn)收合同
- 二零二五年度勞動(dòng)合同解除員工離職賠償金支付協(xié)議
- 二零二五年度水利工程測(cè)繪數(shù)據(jù)保密協(xié)議書
- 2024年中國(guó)醫(yī)藥研發(fā)藍(lán)皮書
- 廣東省佛山市 2023-2024學(xué)年五年級(jí)(上)期末數(shù)學(xué)試卷
- 臺(tái)兒莊介紹課件
- 疥瘡病人的護(hù)理
- 人工智能算法與實(shí)踐-第16章 LSTM神經(jīng)網(wǎng)絡(luò)
- 17個(gè)崗位安全操作規(guī)程手冊(cè)
- 2025年山東省濟(jì)南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 中學(xué)安全辦2024-2025學(xué)年工作計(jì)劃
- 網(wǎng)絡(luò)安全保障服務(wù)方案(網(wǎng)絡(luò)安全運(yùn)維、重保服務(wù))
- 現(xiàn)代科學(xué)技術(shù)概論智慧樹知到期末考試答案章節(jié)答案2024年成都師范學(xué)院
- 軟件模塊化設(shè)計(jì)與開發(fā)標(biāo)準(zhǔn)與規(guī)范
評(píng)論
0/150
提交評(píng)論