版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
云南省臨滄市臨翔區(qū)2024屆中考聯(lián)考數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在網(wǎng)格中,小正方形的邊長均為1,點A,B,C都在格點上,則∠ABC的正切值是()A. B.2 C. D.2.一組數(shù)據(jù):3,2,5,3,7,5,x,它們的眾數(shù)為5,則這組數(shù)據(jù)的中位數(shù)是()A.2 B.3 C.5 D.73.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米4.等腰三角形底角與頂角之間的函數(shù)關系是()A.正比例函數(shù) B.一次函數(shù) C.反比例函數(shù) D.二次函數(shù)5.已知:如圖是y=ax2+2x﹣1的圖象,那么ax2+2x﹣1=0的根可能是下列哪幅圖中拋物線與直線的交點橫坐標()A. B.C. D.6.已知點,為是反比例函數(shù)上一點,當時,m的取值范圍是()A. B. C. D.7.(2011?黑河)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)有下列結論:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,則其中結論正確的個數(shù)是() A、2個 B、3個 C、4個 D、5個8.下列圖案中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.9.如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是A.射線OE是∠AOB的平分線B.△COD是等腰三角形C.C、D兩點關于OE所在直線對稱D.O、E兩點關于CD所在直線對稱10.已知,代數(shù)式的值為()A.-11 B.-1 C.1 D.11二、填空題(共7小題,每小題3分,滿分21分)11.一元二次方程x2=3x的解是:________.12.如圖,在△ACB中,∠ACB=90°,點D為AB的中點,將△ACB繞點C按順時針方向旋轉(zhuǎn),當CB經(jīng)過點D時得到△A1CB1.若AC=6,BC=8,則DB1的長為________.13.若從-3,-1,0,1,3這五個數(shù)中隨機抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,恰好使關于x,y的二元一次方程組有整數(shù)解,且點(a,b)落在雙曲線上的概率是_________.14.某市對九年級學生進行“綜合素質(zhì)”評價,評價結果分為A,B,C,D,E五個等級.現(xiàn)隨機抽取了500名學生的評價結果作為樣本進行分析,繪制了如圖所示的統(tǒng)計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據(jù)此估算該市80000名九年級學生中“綜合素質(zhì)”評價結果為“A”的學生約為_____人.15.已知一組數(shù)據(jù)4,x,5,y,7,9的平均數(shù)為6,眾數(shù)為5,則這組數(shù)據(jù)的中位數(shù)是_____.16.因式分解:x2﹣4=.17.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒lcm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,若四邊形QP′CP為菱形,則t的值為_____.三、解答題(共7小題,滿分69分)18.(10分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統(tǒng)計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統(tǒng)計圖補充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機抽出兩張卡片,求抽到A,B兩班的概率.19.(5分)先化簡,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.20.(8分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當=______時,四邊形BECD是正方形.21.(10分)先化簡,再求值:,其中x=-522.(10分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分線交邊AC于點D,延長BD至點E,且BD=2DE,連接AE.(1)求線段CD的長;(2)求△ADE的面積.23.(12分)如圖,在頂點為P的拋物線y=a(x-h)2+k(a≠0)的對稱軸1的直線上取點A(h,k+),過A作BC⊥l交拋物線于B、C兩點(B在C的左側(cè)),點和點A關于點P對稱,過A作直線m⊥l.又分別過點B,C作直線BE⊥m和CD⊥m,垂足為E,D.在這里,我們把點A叫此拋物線的焦點,BC叫此拋物線的直徑,矩形BCDE叫此拋物線的焦點矩形.(1)直接寫出拋物線y=x2的焦點坐標以及直徑的長.(2)求拋物線y=x2-x+的焦點坐標以及直徑的長.(3)已知拋物線y=a(x-h)2+k(a≠0)的直徑為,求a的值.(4)①已知拋物線y=a(x-h)2+k(a≠0)的焦點矩形的面積為2,求a的值.②直接寫出拋物線y=x2-x+的焦點短形與拋物線y=x2-2mx+m2+1公共點個數(shù)分別是1個以及2個時m的值.24.(14分)解不等式組并寫出它的整數(shù)解.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】分析:連接AC,根據(jù)勾股定理求出AC、BC、AB的長,根據(jù)勾股定理的逆定理得到△ABC是直角三角形,根據(jù)正切的定義計算即可.詳解:連接AC,
由網(wǎng)格特點和勾股定理可知,
AC=,AC2+AB2=10,BC2=10,
∴AC2+AB2=BC2,
∴△ABC是直角三角形,
∴tan∠ABC=.點睛:考查的是銳角三角函數(shù)的定義、勾股定理及其逆定理的應用,熟記銳角三角函數(shù)的定義、掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形是解題的關鍵.2、C【解析】分析:眾數(shù)是指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù),一組數(shù)據(jù)可以有多個眾數(shù),也可以沒有眾數(shù);中位數(shù)是指將數(shù)據(jù)按大小順序排列起來形成一個數(shù)列,居于數(shù)列中間位置的那個數(shù)據(jù).根據(jù)定義即可求出答案.詳解:∵眾數(shù)為5,∴x=5,∴這組數(shù)據(jù)為:2,3,3,5,5,5,7,∴中位數(shù)為5,故選C.點睛:本題主要考查的是眾數(shù)和中位數(shù)的定義,屬于基礎題型.理解他們的定義是解題的關鍵.3、D【解析】
在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點睛】本題考查了解直角三角形的應用--仰角、俯角問題,要求學生能借助仰角構造直角三角形并解直角三角形.4、B【解析】
根據(jù)一次函數(shù)的定義,可得答案.【詳解】設等腰三角形的底角為y,頂角為x,由題意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角與頂角之間的函數(shù)關系是一次函數(shù)關系,故選B.【點睛】本題考查了實際問題與一次函數(shù),根據(jù)題意正確列出函數(shù)關系式是解題的關鍵.5、C【解析】
由原拋物線與x軸的交點位于y軸的兩端,可排除A、D選項;B、方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,B不符合題意;C、拋物線y=ax2與直線y=﹣2x+1的交點,即交點的橫坐標為方程ax2+2x﹣1=0的根,C符合題意.此題得解.【詳解】∵拋物線y=ax2+2x﹣1與x軸的交點位于y軸的兩端,∴A、D選項不符合題意;B、∵方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,∴B選項不符合題意;C、圖中交點的橫坐標為方程ax2+2x﹣1=0的根(拋物線y=ax2與直線y=﹣2x+1的交點),∴C選項符合題意.故選:C.【點睛】本題考查了拋物線與x軸的交點以及二次函數(shù)的圖象與位置變化,逐一分析四個選項中的圖形是解題的關鍵.6、A【解析】
直接把n的值代入求出m的取值范圍.【詳解】解:∵點P(m,n),為是反比例函數(shù)y=-圖象上一點,∴當-1≤n<-1時,∴n=-1時,m=1,n=-1時,m=1,則m的取值范圍是:1≤m<1.故選A.【點睛】此題主要考查了反比例函數(shù)圖象上點的坐標性質(zhì),正確把n的值代入是解題關鍵.7、B【解析】分析:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結論進行判斷.解答:解:①根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以△=b2-4ac>0;故①正確;
②根據(jù)圖示知,該函數(shù)圖象的開口向上,
∴a>0;
故②正確;
③又對稱軸x=-=1,
∴<0,
∴b<0;
故本選項錯誤;
④該函數(shù)圖象交于y軸的負半軸,
∴c<0;
故本選項錯誤;
⑤根據(jù)拋物線的對稱軸方程可知:(-1,0)關于對稱軸的對稱點是(3,0);
當x=-1時,y<0,所以當x=3時,也有y<0,即9a+3b+c<0;故⑤正確.
所以①②⑤三項正確.
故選B.8、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念解答.【詳解】A.不是軸對稱圖形,是中心對稱圖形;B.是軸對稱圖形,是中心對稱圖形;C.不是軸對稱圖形,也不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.9、D【解析】試題分析:A、連接CE、DE,根據(jù)作圖得到OC=OD,CE=DE.∵在△EOC與△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射線OE是∠AOB的平分線,正確,不符合題意.B、根據(jù)作圖得到OC=OD,∴△COD是等腰三角形,正確,不符合題意.C、根據(jù)作圖得到OC=OD,又∵射線OE平分∠AOB,∴OE是CD的垂直平分線.∴C、D兩點關于OE所在直線對稱,正確,不符合題意.D、根據(jù)作圖不能得出CD平分OE,∴CD不是OE的平分線,∴O、E兩點關于CD所在直線不對稱,錯誤,符合題意.故選D.10、D【解析】
根據(jù)整式的運算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數(shù)式中即可得到此題答案.【詳解】解:由題意可知:,原式故選:D.【點睛】此題考查整式的混合運算,解題的關鍵在于利用整式的運算法則進行化簡求得代數(shù)式的值二、填空題(共7小題,每小題3分,滿分21分)11、x1=0,x2=1【解析】
先移項,然后利用因式分解法求解.【詳解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案為:x1=0,x2=1【點睛】本題考查了解一元二次方程-因式分解法:先把方程右邊變形為0,再把方程左邊分解為兩個一次式的乘積,這樣原方程轉(zhuǎn)化為兩個一元一次方程,然后解一次方程即可得到一元二次方程的解12、2【解析】
根據(jù)勾股定理可以得出AB的長度,從而得知CD的長度,再根據(jù)旋轉(zhuǎn)的性質(zhì)可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點D為AB的中點,∴,∵將△ACB繞點C按順時針方向旋轉(zhuǎn),當CB經(jīng)過點D時得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.【點睛】本題考查的是勾股定理、直角三角形斜邊中點的性質(zhì)和旋轉(zhuǎn)的性質(zhì),能夠根據(jù)勾股定理求出AB的長是解題的關鍵.13、【解析】分析:根據(jù)題意可以寫出所有的可能性,然后將所有的可能性代入方程組和雙曲線,找出符號要求的可能性,從而可以解答本題.詳解:從﹣3,﹣1,0,1,3這五個數(shù)中隨機抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,則(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),將上面所有的可能性分別代入關于x,y的二元一次方程組有整數(shù)解,且點(a,b)落在雙曲線上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使關于x,y的二元一次方程組有整數(shù)解,且點(a,b)落在雙曲線上的概率是:.故答案為.點睛:本題考查了列表法與樹狀圖法,解題的關鍵是明確題意,寫出所有的可能性.14、16000【解析】
用畢業(yè)生總?cè)藬?shù)乘以“綜合素質(zhì)”等級為A的學生所占的比即可求得結果.【詳解】∵A,B,C,D,E五個等級在統(tǒng)計圖中的高之比為2:3:3:1:1,∴該市80000名九年級學生中“綜合素質(zhì)”評價結果為“A”的學生約為80000×=16000,故答案為16000.【點睛】本題考查了條形統(tǒng)計圖的應用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).15、1.1【解析】【分析】先判斷出x,y中至少有一個是1,再用平均數(shù)求出x+y=11,即可得出結論.【詳解】∵一組數(shù)據(jù)4,x,1,y,7,9的眾數(shù)為1,∴x,y中至少有一個是1,∵一組數(shù)據(jù)4,x,1,y,7,9的平均數(shù)為6,∴(4+x+1+y+7+9)=6,∴x+y=11,∴x,y中一個是1,另一個是6,∴這組數(shù)為4,1,1,6,7,9,∴這組數(shù)據(jù)的中位數(shù)是×(1+6)=1.1,故答案為:1.1.【點睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)等概念,熟練掌握眾數(shù)、平均數(shù)、中位數(shù)的概念、判斷出x,y中至少有一個是1是解本題的關鍵.16、(x+2)(x-2).【解析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考點:因式分解-運用公式法17、1【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【點睛】
此題主要考查了菱形的性質(zhì),勾股定理,關鍵是要熟記定理的內(nèi)容并會應用.三、解答題(共7小題,滿分69分)18、(1)25件;(2)見解析;(3)B班的獲獎率高;(4)16【解析】試題分析:(1)直接利用扇形統(tǒng)計圖中百分數(shù),進而求出B班參賽作品數(shù)量;(2)利用C班提供的參賽作品的獲獎率為50%,結合C班參賽數(shù)量得出獲獎數(shù)量;(3)分別求出各班的獲獎百分率,進而求出答案;(4)利用樹狀統(tǒng)計圖得出所有符合題意的答案進而求出其概率.試題解析:(1)由題意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班參賽作品有25件;(2)∵C班提供的參賽作品的獲獎率為50%,∴C班的參賽作品的獲獎數(shù)量為:100×20%×50%=10(件),如圖所示:;(3)A班的獲獎率為:14100×35%×100%=40%,B班的獲獎率為:11C班的獲獎率為:1020=50%;D班的獲獎率為:8故C班的獲獎率高;(4)如圖所示:,故一共有12種情況,符合題意的有2種情況,則從中一次隨機抽出兩張卡片,求抽到A、B兩班的概率為:212=1考點:1.列表法與樹狀圖法;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖.19、【解析】
對待求式的分子、分母進行因式分解,并將除法化為乘法可得×-1,通過約分即可得到化簡結果;先利用特殊角的三角函數(shù)值求出a的值,再將a、b的值代入化簡結果中計算即可解答本題.【詳解】原式=×-1=-1==,當a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1時,原式=.【點睛】本題考查了分式的化簡求值,解題的關鍵是熟練的掌握分式的化簡求值運算法則.20、(1)詳見解析;(2)菱形;(3)當∠A=45°,四邊形BECD是正方形.【解析】
(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.【詳解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四邊形ADEC為平行四邊形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D為AB中點,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四邊形,∵∠ACB=90°,D是AB中點,∴BD=CD,(斜邊中線等于斜邊一半)∴四邊形BECD是菱形;(3)若D為AB中點,則當∠A=45°時,四邊形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四邊形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四邊形BECD是菱形,∴四邊形BECD是正方形,故答案為45°.【點睛】本題考查了平行四邊形的判定與性質(zhì),菱形的判定、正方形的判定,直角三角形斜邊中線的性質(zhì)等,綜合性較強,熟練掌握和靈活運用相關知識是解題的關鍵.21、,-【解析】分析:首先把括號里的式子進行通分,然后把除法運算轉(zhuǎn)化成乘法運算,進行約分化簡,最后代值計算.詳解:.當時,原式.點睛:本題主要考查分式的混合運算,注意運算順序,并熟練掌握同分、因式分解、約分等知識點.22、(1)43;(2)S【解析】分析:(1)過點D作DH⊥AB,根據(jù)角平分線的性質(zhì)得到DH=DC根據(jù)正弦的定義列出方程,解方程即可;(2)根據(jù)三角形的面積公式計算.詳解:(1)過點D作DH⊥AB,垂足為點H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,則AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.∵sin∠BAC=HDAD=(2)S△ABD∵BD=2DE,∴S△ABD點睛:本題考查的是角平分線的性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.23、(1)4(1)4(3)(4)①a=±;②當m=1-或m=5+時,1個公共點,當1-<m≤1或5≤m<5+時,1個公共點,【解析】
(1)根據(jù)題意可以求得拋物線y=x1的焦點坐標以及直徑的長;(1)根據(jù)題意可以求得拋物線y=x1-x+的焦點坐標以及直徑的長;(3)根據(jù)題意和y=a(x-h)1+k(a≠0)的直徑為,可以求得a的值;(4)①根據(jù)題意和拋物線y=ax1+bx+c(a≠0)的焦點矩形的面積為1,可以求得a的值;②根據(jù)(1)中的結果和圖形可以求得拋物線y=x1-x+的焦點矩形與拋物線y=x1-1mx+m1+1公共點個數(shù)分別是1個以及1個時m的值.【詳解】(1)∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電力行業(yè)助理的工作職責簡述
- 高校人才培養(yǎng)方案的更新
- 2025年全球及中國石油和天然氣行業(yè)用有機緩蝕劑行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球桶形立銑刀行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國醫(yī)療推車液晶顯示器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球輪胎式破碎機行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國劇場動作自動化設備行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國單線金剛石線切割機行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球履帶調(diào)節(jié)器行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球防水低光雙筒望遠鏡行業(yè)調(diào)研及趨勢分析報告
- 安全生產(chǎn)網(wǎng)格員培訓
- 小學數(shù)學分數(shù)四則混合運算300題帶答案
- 林下野雞養(yǎng)殖建設項目可行性研究報告
- 心肺復蘇術課件2024新版
- 2024年內(nèi)蒙古呼和浩特市中考文科綜合試題卷(含答案)
- 大型商場招商招租方案(2篇)
- 會陰擦洗課件
- 2024年交管12123學法減分考試題庫和答案
- 臨床下肢深靜脈血栓的預防和護理新進展
- 2024年山東泰安市泰山財金投資集團有限公司招聘筆試參考題庫含答案解析
- 內(nèi)鏡下粘膜剝離術(ESD)護理要點及健康教育
評論
0/150
提交評論