相似(全章教案)_第1頁(yè)
相似(全章教案)_第2頁(yè)
相似(全章教案)_第3頁(yè)
相似(全章教案)_第4頁(yè)
相似(全章教案)_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

授課班級(jí):九年級(jí)76班授課時(shí)間:2015年3月日第二十七章相似27.1圖形的相似(一)一、教學(xué)目標(biāo)1.理解并掌握兩個(gè)圖形相似的概念.2.了解成比例線段的概念,會(huì)確定線段的比.二、重點(diǎn)、難點(diǎn)重點(diǎn):相似圖形的概念與成比例線段的概念.難點(diǎn):成比例線段概念.難點(diǎn)的突破方法:(1)對(duì)于相似圖形的概念,可用大量的實(shí)例引入,但要注意教材中“把形狀相同的圖形說成是相似圖形”,只是對(duì)相似圖形概念的一個(gè)描述,不是定義;還要強(qiáng)調(diào):①相似形一定要形狀相同,與它的位置、顏色、大小無關(guān)(其大小可能一樣,也有可能不一樣,當(dāng)形狀與大小都一樣時(shí),兩個(gè)圖形就是全等形,所以全等形是一種特殊的相似形);②相似形不僅僅指平面圖形,也包括立體圖形的情況,如飛機(jī)和飛機(jī)模型也是相似形;③兩個(gè)圖形相似,其中一個(gè)圖形可以看作有另一個(gè)圖形放大或縮小得到的,而把一個(gè)圖形的部分拉長(zhǎng)或加寬得到的圖形和原圖形不是相似圖形.(2)對(duì)于成比例線段:①我們是在學(xué)生小學(xué)學(xué)過數(shù)的比,及比例的基本性質(zhì)等知識(shí)的基礎(chǔ)上來學(xué)習(xí)成比例線段的;②兩條線段的比與所采用的長(zhǎng)度單位沒有關(guān)系,在計(jì)算時(shí)要注意統(tǒng)一單位;③線段的比是一個(gè)沒有單位的正數(shù);④四條線段a,b,c,d成比例,記作或a:b=c:d;⑤若四條線段滿足,則有ad=bc(為利于今后的學(xué)習(xí),可適當(dāng)補(bǔ)充:反之,若四條線段滿足ad=bc,則有,或其它七種表達(dá)形式).三、例題的意圖本節(jié)課的三道例題都是補(bǔ)充的題目,例1是一道判斷圖形相似的選擇題,通過講解要使學(xué)生明確:(1)相似形一定要形狀相同,與它的位置、顏色、大小無關(guān);(2)兩個(gè)圖形相似,其中一個(gè)圖形可以看作有另一個(gè)圖形放大或縮小得到的,而把一個(gè)圖形的部分拉長(zhǎng)或加寬得到的圖形和原圖形不是相似圖形;(3)在識(shí)別相似圖形時(shí),不要以位置為準(zhǔn),要“形狀相同”;例2通過分別采用m、cm、mm三種不同的長(zhǎng)度單位,求得的的值相等,使學(xué)生明確:兩條線段的比與所采用的長(zhǎng)度單位無關(guān),但求比時(shí)兩條線段的長(zhǎng)度單位必須一致;例3是求線段的比的題,要使學(xué)生對(duì)比例尺有進(jìn)一步的認(rèn)識(shí):比例尺=,而求圖上距離與實(shí)際距離的比就是求兩條線段的比.四、課堂引入1.(1)請(qǐng)同學(xué)們看黑板正上方的五星紅旗,五星紅旗上的大五角星與小五角星他們的形狀、大小有什么關(guān)系?再如下圖的兩個(gè)畫面,他們的形狀、大小有什么關(guān)系.(還可以再舉幾個(gè)例子)(2)教材P36引入.(3)相似圖形概念:把形狀相同的圖形說成是相似圖形.(強(qiáng)調(diào):見前面)(4)讓學(xué)生再舉幾個(gè)相似圖形的例子.(5)講解例1.2.問題:如果把老師手中的教鞭與鉛筆,分別看成是兩條線段AB和CD,那么這兩條線段的長(zhǎng)度比是多少?歸納:兩條線段的比,就是兩條線段長(zhǎng)度的比.3.成比例線段:對(duì)于四條線段a,b,c,d,如果其中兩條線段的比與另兩條線段的比相等,如(即ad=bc),我們就說這四條線段是成比例線段,簡(jiǎn)稱比例線段.【注意】(1)兩條線段的比與所采用的長(zhǎng)度單位沒有關(guān)系,在計(jì)算時(shí)要注意統(tǒng)一單位;(2)線段的比是一個(gè)沒有單位的正數(shù);(3)四條線段a,b,c,d成比例,記作或a:b=c:d;(4)若四條線段滿足,則有ad=bc.五、例題講解例1(補(bǔ)充:選擇題)如圖,下面右邊的四個(gè)圖形中,與左邊的圖形相似的是()分析:因?yàn)閳DA是把圖拉長(zhǎng)了,而圖D是把圖壓扁了,因此它們與左圖都不相似;圖B是正六邊形,與左圖的正五邊形的邊數(shù)不同,故圖B與左圖也不相似;而圖C是將左圖繞正五邊形的中心旋轉(zhuǎn)180o后,再按一定比例縮小得到的,因此圖C與左圖相似,故此題應(yīng)選C.例2(補(bǔ)充)一張桌面的長(zhǎng)a=1.25m,寬b=0.75m,那么長(zhǎng)與寬的比是多少?(1)如果a=125cm,b=75cm,那么長(zhǎng)與寬的比是多少?(2)如果a=1250mm,b=750mm,那么長(zhǎng)與寬的比是多少?解:略.()小結(jié):上面分別采用m、cm、mm三種不同的長(zhǎng)度單位,求得的的值是相等的,所以說,兩條線段的比與所采用的長(zhǎng)度單位無關(guān),但求比時(shí)兩條線段的長(zhǎng)度單位必須一致.例3(補(bǔ)充)已知:一張地圖的比例尺是1:32000000,量得北京到上海的圖上距離大約為3.5cm,求北京到上海的實(shí)際距離大約是多少km?分析:根據(jù)比例尺=,可求出北京到上海的實(shí)際距離.解:略答:北京到上海的實(shí)際距離大約是1120km.六、課堂練習(xí)1.教材P37的觀察.2.下列說法正確的是()A.小明上幼兒園時(shí)的照片和初中畢業(yè)時(shí)的照片相似.B.商店新買來的一副三角板是相似的.C.所有的課本都是相似的.D.國(guó)旗的五角星都是相似的.3.如圖,請(qǐng)測(cè)量出右圖中兩個(gè)形似的長(zhǎng)方形的長(zhǎng)和寬,(1)(小)長(zhǎng)是_______cm,寬是_______cm;(大)長(zhǎng)是_______cm,寬是_______cm;(2)(?。?;(大).(3)你由上述的計(jì)算,能得到什么結(jié)論嗎?(答:相似的長(zhǎng)方形的寬與長(zhǎng)之比相等)4.在比例尺是1:8000000的“中國(guó)政區(qū)”地圖上,量得福州與上海之間的距離時(shí)7.5cm,那么福州與上海之間的實(shí)際距離是多少?5.AB兩地的實(shí)際距離為2500m,在一張平面圖上的距離是5cm,那么這張平面地圖的比例尺是多少?七、課后練習(xí)1.觀察下列圖形,指出哪些是相似圖形:(答:相似圖形分別是:(1)和(8);(2)和(6);(3)和(7))2.教材P37練習(xí)1、2.3.教材P40練習(xí)1與習(xí)題1.教學(xué)反思:本節(jié)教學(xué),對(duì)于相似圖形的概念,用了大量的實(shí)例引入,強(qiáng)調(diào)了教材中“把形狀相同的圖形說成是相似圖形”,只是對(duì)相似圖形概念的一個(gè)描述,不是定義;對(duì)于成比例線段:①是在學(xué)生小學(xué)學(xué)過數(shù)的比,及比例的基本性質(zhì)等知識(shí)的基礎(chǔ)上來學(xué)習(xí)成比例線段的;②兩條線段的比與所采用的長(zhǎng)度單位沒有關(guān)系,在計(jì)算時(shí)要注意統(tǒng)一單位.授課班級(jí):九年級(jí)76班授課時(shí)間:2015年3月日27.1圖形的相似(二)一、教學(xué)目標(biāo)1.知道相似多邊形的主要特征,即:相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等.2.會(huì)根據(jù)相似多邊形的特征識(shí)別兩個(gè)多邊形是否相似,并會(huì)運(yùn)用其性質(zhì)進(jìn)行相關(guān)的計(jì)算.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):相似多邊形的主要特征與識(shí)別.2.難點(diǎn):運(yùn)用相似多邊形的特征進(jìn)行相關(guān)的計(jì)算.3.難點(diǎn)的突破方法(1)判別兩個(gè)多邊形是否相似,要看這兩個(gè)多邊形的對(duì)應(yīng)角是否相等,且對(duì)應(yīng)邊的比是否也相等,這兩個(gè)條件缺一不可;可以以矩形、菱形為例說明:僅有對(duì)應(yīng)角相等,或僅有對(duì)應(yīng)邊的比相等的兩個(gè)多邊形不一定相似(見例1),也可以借助電腦直觀演示,增加效果,從而糾正學(xué)生的錯(cuò)誤認(rèn)識(shí).(2)由相似多邊形的特征可知,如果已知兩個(gè)多邊形相似,就等于知道它們的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等(對(duì)應(yīng)邊成比例),在計(jì)算時(shí)要能靈活運(yùn)用.(3)相似比是一個(gè)很重要的概念,它實(shí)質(zhì)是把一個(gè)圖形放大或縮小的倍數(shù)(即相似多邊形的對(duì)應(yīng)邊的長(zhǎng)放大或縮小的倍數(shù)).三、例題的意圖本節(jié)課安排了3個(gè)例題,例1與例3都是補(bǔ)充的題目,其中通過例1的學(xué)習(xí),要讓學(xué)生了解判別兩個(gè)多邊形是否相似,要看這兩個(gè)多邊形的對(duì)應(yīng)角是否相等,且對(duì)應(yīng)邊的比是否也相等,這兩個(gè)條件缺一不可;而若說明兩個(gè)多邊形不相似,則必須說明各角無法對(duì)應(yīng)相等或各對(duì)應(yīng)邊的比不相等,或舉出合適的反例,在解決這個(gè)問題上,依靠直覺觀察是不可靠的;例2是教材P39的例題,它主要考查的是相似多邊形的特征,運(yùn)用相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等即可求解;例3是相似多邊形特征的靈活運(yùn)用(使用方程思想)的題目,在教學(xué)中還可根據(jù)自己的學(xué)生學(xué)習(xí)的程度,適當(dāng)增加一些題目用以鞏固相似多邊形的性質(zhì).四、課堂引入1.如圖的左邊格點(diǎn)圖中有一個(gè)四邊形,請(qǐng)?jiān)谟疫叺母顸c(diǎn)圖中畫出一個(gè)與該四邊形相似的圖形.2.問題:對(duì)于圖中兩個(gè)相似的四邊形,它們的對(duì)應(yīng)角,對(duì)應(yīng)邊的比是否相等.3.【結(jié)論】:(1)相似多邊形的特征:相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等.反之,如果兩個(gè)多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等,那么這兩個(gè)多邊形相似.(2)相似比:相似多邊形對(duì)應(yīng)邊的比稱為相似比.問題:相似比為1時(shí),相似的兩個(gè)圖形有什么關(guān)系?結(jié)論:相似比為1時(shí),相似的兩個(gè)圖形全等,因此全等形是一種特殊的相似形.五、例題講解例1(補(bǔ)充)(選擇題)下列說法正確的是()A.所有的平行四邊形都相似B.所有的矩形都相似C.所有的菱形都相似D.所有的正方形都相似分析:A中平行四邊形各角不一定對(duì)應(yīng)相等,因此所有的平行四邊形不一定都相似,故A錯(cuò);B中矩形雖然各角都相等,但是各對(duì)應(yīng)邊的比不一定相等,因此所有的矩形不一定都相似,故B錯(cuò);C中菱形雖然各對(duì)應(yīng)邊的比相等,但是各角不一定對(duì)應(yīng)相等,因此所有的菱形不一定都相似,故C也錯(cuò);D中任兩個(gè)正方形的各角都相等,且各邊都對(duì)應(yīng)成比例,因此所有的正方形都相似,故D說法正確,因此此題應(yīng)選D.例2(教材P39例題).分析:求相似多邊形中的某些角的度數(shù)和某些線段的長(zhǎng),可根據(jù)相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等來解題,關(guān)鍵是找準(zhǔn)對(duì)應(yīng)角與對(duì)應(yīng)邊,從而列出正確的比例式.解:略例3(補(bǔ)充)已知四邊形ABCD與四邊形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:分析:因?yàn)閮蓚€(gè)四邊形相似,因此可根據(jù)相似多邊形的對(duì)應(yīng)邊的比相等來解題.解:∵四邊形ABCD與四邊形A1B1C1D1∴AB:BC:CD:DA=A1B1:B1C1:C1D1:D1A∵A1B1:B1C1:C1D1:D1A1=7:8:11∴AB:BC:CD:DA=7:8:11:14.設(shè)AB=7m,則BC=8m,CD=11m,DA=14m.∵四邊形ABCD的周長(zhǎng)為40,∴7m+8m+11m+14m=40.∴m=1.∴AB=7,則BC=8,CD=11,DA=14.六、課堂練習(xí)1.教材P40練習(xí)2、3.2.教材P41習(xí)題4.3.(選擇題)△ABC與△DEF相似,且相似比是,則△DEF與△ABC與的相似比是().A.B.C.D.4.(選擇題)下列所給的條件中,能確定相似的有()(1)兩個(gè)半徑不相等的圓;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等邊三角形;(5)所有的等腰梯形;(6)所有的正六邊形.A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)5.已知四邊形ABCD和四邊形A1B1C1D1相似,四邊形ABCD的最長(zhǎng)邊和最短邊的長(zhǎng)分別是10cm和4cm,如果四邊形A1B1C1D1的最短邊的長(zhǎng)是6cm,那么四邊形A1B1C1D七、課后練習(xí)1.教材P41習(xí)題3、5、6.2.如圖,AB∥EF∥CD,CD=4,AB=9,若梯形CDEF與梯形EFAB相似,求EF的長(zhǎng).教學(xué)反思:教學(xué)中,應(yīng)到學(xué)生弄清楚了判別兩個(gè)多邊形是否相似,要看這兩個(gè)多邊形的對(duì)應(yīng)角是否相等,且對(duì)應(yīng)邊的比是否也相等,這兩個(gè)條件缺一不可;以矩形、菱形為例說明:僅有對(duì)應(yīng)角相等,或僅有對(duì)應(yīng)邊的比相等的兩個(gè)多邊形不一定相似(見例1),從而糾正學(xué)生的錯(cuò)誤認(rèn)識(shí).其中,由相似多邊形的特征可知,如果已知兩個(gè)多邊形相似,就等于知道它們的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等(對(duì)應(yīng)邊成比例),在計(jì)算時(shí)要能靈活運(yùn)用.此外相似比是一個(gè)很重要的概念,它實(shí)質(zhì)是把一個(gè)圖形放大或縮小的倍數(shù)(即相似多邊形的對(duì)應(yīng)邊的長(zhǎng)放大或縮小的倍數(shù)).授課班級(jí):九年級(jí)76班授課時(shí)間:2016年3月日27.2.1相似三角形的判定(一)一、教學(xué)目標(biāo)1.經(jīng)歷兩個(gè)三角形相似的探索過程,體驗(yàn)分析歸納得出數(shù)學(xué)結(jié)論的過程,進(jìn)一步發(fā)展學(xué)生的探究、交流能力.2.會(huì)運(yùn)用“兩個(gè)三角形相似的判定條件”和“三角形相似的預(yù)備定理”解決簡(jiǎn)單的問題.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):相似三角形的定義與三角形相似的預(yù)備定理.2.難點(diǎn):三角形相似的預(yù)備定理的應(yīng)用.三、課堂引入1.復(fù)習(xí)引入(1)相似多邊形的主要特征是什么?(2)在相似多邊形中,最簡(jiǎn)單的就是相似三角形.在△ABC與△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,且.我們就說△ABC與△A′B′C′相似,記作△ABC∽△A′B′C′,k就是它們的相似比.反之如果△ABC∽△A′B′C′,則有∠A=∠A′,∠B=∠B′,∠C=∠C′,且.(3)問題:如果k=1,這兩個(gè)三角形有怎樣的關(guān)系?2.教材P42的思考,并引導(dǎo)學(xué)生探索與證明.3.【歸納】三角形相似的預(yù)備定理平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形與原三角形相似.四、例題講解例1(補(bǔ)充)如圖△ABC∽△DCA,AD∥BC,∠B=∠DCA.(1)寫出對(duì)應(yīng)邊的比例式;(2)寫出所有相等的角;(3)若AB=10,BC=12,CA=6.求AD、DC的長(zhǎng).分析:可類比全等三角形對(duì)應(yīng)邊、對(duì)應(yīng)角的關(guān)系來尋找相似三角形中的對(duì)應(yīng)元素.對(duì)(3)可由相似三角形對(duì)應(yīng)邊的比相等求出AD與DC的長(zhǎng).解:略(AD=3,DC=5)例2(補(bǔ)充)如圖,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的長(zhǎng).分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性質(zhì),有,又由AD=EC可求出AD的長(zhǎng),再根據(jù)求出DE的長(zhǎng).解:略().五、課堂練習(xí)1.(選擇)下列各組三角形一定相似的是()A.兩個(gè)直角三角形B.兩個(gè)鈍角三角形C.兩個(gè)等腰三角形D.兩個(gè)等邊三角形2.(選擇)如圖,DE∥BC,EF∥AB,則圖中相似三角形一共有()A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)3.如圖,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的長(zhǎng).(CD=10)六、作業(yè)1.如圖,△ABC∽△AED,其中DE∥BC,寫出對(duì)應(yīng)邊的比例式.2.如圖,△ABC∽△AED,其中∠ADE=∠B,寫出對(duì)應(yīng)邊的比例式.3.如圖,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的長(zhǎng).教學(xué)反思:本節(jié)的教學(xué)重點(diǎn)是相似三角形的定義與三角形相似的預(yù)備定理.教學(xué)難點(diǎn)是三角形相似的預(yù)備定理的應(yīng)用.三角形相似的預(yù)備定理,即“平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形與原三角形相似”很重要,它是學(xué)習(xí)其它判定的基礎(chǔ),自身也有廣泛的應(yīng)用.授課班級(jí):九年級(jí)76班授課時(shí)間:2016年3月日27.2.1相似三角形的判定(二)一、教學(xué)目標(biāo)1.初步掌握“三組對(duì)應(yīng)邊的比相等的兩個(gè)三角形相似”的判定方法,以及“兩組對(duì)應(yīng)邊的比相等且它們的夾角相等的兩個(gè)三角形相似”的判定方法.2.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問題.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):掌握兩種判定方法,會(huì)運(yùn)用兩種判定方法判定兩個(gè)三角形相似.2.難點(diǎn):(1)三角形相似的條件歸納、證明;(2)會(huì)準(zhǔn)確的運(yùn)用兩個(gè)三角形相似的條件來判定三角形是否相似.三、課堂引入1.復(fù)習(xí)提問:(1)兩個(gè)三角形全等有哪些判定方法?(2)我們學(xué)習(xí)過哪些判定三角形相似的方法?(3)全等三角形與相似三角形有怎樣的關(guān)系?(4)如圖,如果要判定△ABC與△A’B’C’相似,是不是一定需要一一驗(yàn)證所有的對(duì)應(yīng)角和對(duì)應(yīng)邊的關(guān)系?2.(1)提出問題:首先,由三角形全等的SSS判定方法,我們會(huì)想如果一個(gè)三角形的三條邊與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么能否判定這兩個(gè)三角形相似呢?(2)帶領(lǐng)學(xué)生畫圖探究;(3)【歸納】三角形相似的判定方法1如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似.3.(1)提出問題:怎樣證明這個(gè)命題是正確的呢?(2)教師帶領(lǐng)學(xué)生探求證明方法.4.用上面同樣的方法進(jìn)一步探究三角形相似的條件:(1)提出問題:由三角形全等的SAS判定方法,我們也會(huì)想如果一個(gè)三角形的兩條邊與另一個(gè)三角形的兩條邊對(duì)應(yīng)成比例,那么能否判定這兩個(gè)三角形相似呢?(2)讓學(xué)生畫圖,自主展開探究活動(dòng).(3)【歸納】三角形相似的判定方法2兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,且它們的夾角相等,那么這兩個(gè)三角形相似.四、例題講解例1(教材P46例1)分析:判定兩個(gè)三角形是否相似,可以根據(jù)已知條件,看是不是符合相似三角形的定義或三角形相似的判定方法,對(duì)于(1)由于是已知一對(duì)對(duì)應(yīng)角相等及四條邊長(zhǎng),因此看是否符合三角形相似的判定方法2“兩組對(duì)應(yīng)邊的比相等且它們的夾角相等的兩個(gè)三角形相似”,對(duì)于(2)給的幾個(gè)條件全是邊,因此看是否符合三角形相似的判定方法1“三組對(duì)應(yīng)邊的比相等的兩個(gè)三角形相似”即可,其方法是通過計(jì)算成比例的線段得到對(duì)應(yīng)邊.解:略※例2(補(bǔ)充)已知:如圖,在四邊形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=,求AD的長(zhǎng).分析:由已知一對(duì)對(duì)應(yīng)角相等及四條邊長(zhǎng),猜想應(yīng)用“兩組對(duì)應(yīng)邊的比相等且它們的夾角相等”來證明.計(jì)算得出,結(jié)合∠B=∠ACD,證明△ABC∽△DCA,再利用相似三角形的定義得出關(guān)于AD的比例式,從而求出AD的長(zhǎng).解:略(AD=).五、課堂練習(xí)1.教材P47.2.2.如果在△ABC中∠B=30°,AB=5㎝,AC=4㎝,在△A’B’C’中,∠B’=30°A’B’=10㎝,A’C’=8㎝,這兩個(gè)三角形一定相似嗎?試著畫一畫、看一看?3.如圖,△ABC中,點(diǎn)D、E、F分別是AB、BC、CA的中點(diǎn),求證:△ABC∽△DEF.六、作業(yè)1.教材P47.1、3.2.如圖,AB?AC=AD?AE,且∠1=∠2,求證:△ABC∽△AED.※3.已知:如圖,P為△ABC中線AD上的一點(diǎn),且BD2=PD?AD,求證:△ADC∽△CDP.教學(xué)反思:教學(xué)中很好地把握了三角形相似的條件歸納、證明;是學(xué)生能準(zhǔn)確的運(yùn)用兩個(gè)三角形相似的條件來判定三角形是否相似,后續(xù)學(xué)習(xí)還要加強(qiáng)訓(xùn)練.授課班級(jí):九年級(jí)76班授課時(shí)間:2015年3月日27.2.1相似三角形的判定(三)一、教學(xué)目標(biāo)1.經(jīng)歷兩個(gè)三角形相似的探索過程,進(jìn)一步發(fā)展學(xué)生的探究、交流能力.2.掌握“兩角對(duì)應(yīng)相等,兩個(gè)三角形相似”的判定方法.3.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問題.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):三角形相似的判定方法3——“兩角對(duì)應(yīng)相等,兩個(gè)三角形相似”2.難點(diǎn):三角形相似的判定方法3的運(yùn)用.三、課堂引入1.復(fù)習(xí)提問:(1)我們已學(xué)習(xí)過哪些判定三角形相似的方法?(2)如圖,△ABC中,點(diǎn)D在AB上,如果AC2=AD?AB,那么△ACD與△ABC相似嗎?說說你的理由.(3)如(2)題圖,△ABC中,點(diǎn)D在AB上,如果∠ACD=∠B,那么△ACD與△ABC相似嗎?——引出課題.(4)教材P48的探究3.四、例題講解例1(教材P48例2).分析:要證PA?PB=PC?PD,需要證,則需要證明這四條線段所在的兩個(gè)三角形相似.由于所給的條件是圓中的兩條相交弦,故需要先作輔助線構(gòu)造三角形,然后利用圓的性質(zhì)“同弧上的圓周角相等”得到兩組角對(duì)應(yīng)相等,再由三角形相似的判定方法3,可得兩三角形相似.證明:略(見教材P48例2).例2(補(bǔ)充)已知:如圖,矩形ABCD中,E為BC上一點(diǎn),DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的長(zhǎng).分析:要求的是線段DF的長(zhǎng),觀察圖形,我們發(fā)現(xiàn)AB、AD、AE和DF這四條線段分別在△ABE和△AFD中,因此只要證明這兩個(gè)三角形相似,再由相似三角形的性質(zhì)可以得到這四條線段對(duì)應(yīng)成比例,從而求得DF的長(zhǎng).由于這兩個(gè)三角形都是直角三角形,故有一對(duì)直角相等,再找出另一對(duì)角對(duì)應(yīng)相等,即可用“兩角對(duì)應(yīng)相等,兩個(gè)三角形相似”的判定方法來證明這兩個(gè)三角形相似.解:略(DF=).五、課堂練習(xí)1.教材P49的練習(xí)1、2.2.已知:如圖,∠1=∠2=∠3,求證:△ABC∽△ADE.3.下列說法是否正確,并說明理由.(1)有一個(gè)銳角相等的兩直角三角形是相似三角形;(2)有一個(gè)角相等的兩等腰三角形是相似三角形.六、作業(yè)1.已知:如圖,△ABC的高AD、BE交于點(diǎn)F.求證:.教學(xué)反思:教學(xué)中讓學(xué)生經(jīng)歷兩個(gè)三角形相似的探索過程,進(jìn)一步發(fā)展學(xué)生的探究、交流能力.使學(xué)生掌握了“兩角對(duì)應(yīng)相等,兩個(gè)三角形相似”的判定方法,并能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問題,效果很好.授課班級(jí):九年級(jí)76班授課時(shí)間:2015年3月日27.2.2相似三角形的應(yīng)用舉例一、教學(xué)目標(biāo)1.進(jìn)一步鞏固相似三角形的知識(shí).2.能夠運(yùn)用三角形相似的知識(shí),解決不能直接測(cè)量物體的長(zhǎng)度和高度(如測(cè)量金字塔高度問題、測(cè)量河寬問題、盲區(qū)問題)等的一些實(shí)際問題.3.通過把實(shí)際問題轉(zhuǎn)化成有關(guān)相似三角形的數(shù)學(xué)模型,進(jìn)一步了解數(shù)學(xué)建模的思想,培養(yǎng)分析問題、解決問題的能力.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):運(yùn)用三角形相似的知識(shí)計(jì)算不能直接測(cè)量物體的長(zhǎng)度和高度.2.難點(diǎn):靈活運(yùn)用三角形相似的知識(shí)解決實(shí)際問題(如何把實(shí)際問題抽象為數(shù)學(xué)問題).三、課堂引入問:世界現(xiàn)存規(guī)模最大的金字塔位于哪個(gè)國(guó)家,叫什么金字塔?胡夫金字塔是埃及現(xiàn)存規(guī)模最大的金字塔,被喻為“世界古代七大奇觀之一”.塔的4個(gè)斜面正對(duì)東南西北四個(gè)方向,塔基呈正方形,每邊長(zhǎng)約230多米.據(jù)考證,為建成大金字塔,共動(dòng)用了10萬人花了20年時(shí)間.原高146.59米,但由于經(jīng)過幾千年的風(fēng)吹雨打,頂端被風(fēng)化吹蝕,所以高度有所降低在古希臘,有一位偉大的科學(xué)家叫泰勒斯.一天,希臘國(guó)王阿馬西斯對(duì)他說:“聽說你什么都知道,那就請(qǐng)你測(cè)量一下埃及金字塔的高度吧!”,這在當(dāng)時(shí)條件下是個(gè)大難題,因?yàn)槭呛茈y爬到塔頂?shù)模阒捞├账故窃鯓訙y(cè)量大金字塔的高度的嗎?四、例題講解例1(教材P49例3——測(cè)量金字塔高度問題)分析:根據(jù)太陽光的光線是互相平行的特點(diǎn),可知在同一時(shí)刻的陽光下,豎直的兩個(gè)物體的影子互相平行,從而構(gòu)造相似三角形,再利用相似三角形的判定和性質(zhì),根據(jù)已知條件,求出金字塔的高度.解:略(見教材P49)問:你還可以用什么方法來測(cè)量金字塔的高度?(如用身高等)解法二:用鏡面反射(如圖,點(diǎn)A是個(gè)小鏡子,根據(jù)光的反射定律:由入射角等于反射角構(gòu)造相似三角形).(解法略)例2(教材P50例4——測(cè)量河寬問題)分析:設(shè)河寬PQ長(zhǎng)為xm,由于此種測(cè)量方法構(gòu)造了三角形中的平行截線,故可得到相似三角形,因此有,即.再解x的方程可求出河寬.解:略(見教材P50)問:你還可以用什么方法來測(cè)量河的寬度?解法二:如圖構(gòu)造相似三角形(解法略).例3(教材P50例5——盲區(qū)問題)分析:略(見教材P50)解:略(見教材P51)五、課堂練習(xí)1.在同一時(shí)刻物體的高度與它的影長(zhǎng)成正比例.在某一時(shí)刻,有人測(cè)得一高為1.8米的竹竿的影長(zhǎng)為3米,某一高樓的影長(zhǎng)為602.小明要測(cè)量一座古塔的高度,從距他2米的一小塊積水處C看到塔頂?shù)牡褂?,已知小明的眼部離地面的高度DE是1.5米,塔底中心B到積水處C的距離是40米六、作業(yè)1.教材P51.練習(xí)1和練習(xí)2.2.如圖,小明在打網(wǎng)球時(shí),使球恰好能打過網(wǎng),而且落在離網(wǎng)5米的位置上,求球拍擊球的高度h.(設(shè)網(wǎng)球是直線運(yùn)動(dòng))3.小明想利用樹影測(cè)量樹高,他在某一時(shí)刻測(cè)得長(zhǎng)為1m的竹竿影長(zhǎng)0.9m,但當(dāng)他馬上測(cè)量樹影時(shí),因樹靠近一幢建筑物,影子不全落在地面上,有一部分影子在墻上,如圖,他先測(cè)得留在墻上的影高1.2m,又測(cè)得地面部分的影長(zhǎng)2.7m,他求得的樹高是多少?教學(xué)反思:本節(jié)教學(xué)主要是讓學(xué)生能夠運(yùn)用三角形相似的知識(shí),解決不能直接測(cè)量物體的長(zhǎng)度和高度(如測(cè)量金字塔高度問題、測(cè)量河寬問題、盲區(qū)問題)等的一些實(shí)際問題.通過把實(shí)際問題轉(zhuǎn)化成有關(guān)相似三角形的數(shù)學(xué)模型,進(jìn)一步了解數(shù)學(xué)建模的思想,培養(yǎng)分析問題、解決問題的能力,進(jìn)一步鞏固相似三角形的知識(shí).授課班級(jí):九年級(jí)76班授課時(shí)間:2015年3月日27.2.3相似三角形的周長(zhǎng)與面積一、教學(xué)目標(biāo)1.理解并初步掌握相似三角形周長(zhǎng)的比等于相似比,面積的比等于相似比的平方.2.能用三角形的性質(zhì)解決簡(jiǎn)單的問題.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):相似三角形的性質(zhì)與運(yùn)用.2.難點(diǎn):相似三角形性質(zhì)的靈活運(yùn)用,及對(duì)“相似三角形面積的比等于相似比的平方”性質(zhì)的理解,特別是對(duì)它的反向應(yīng)用的理解,即對(duì)“由面積比求相似比”的理解.三、課堂引入1.復(fù)習(xí)提問:已知:?ABC∽?A’B’C’,根據(jù)相似的定義,我們有哪些結(jié)論?(從對(duì)應(yīng)邊上看;從對(duì)應(yīng)角上看:)問:兩個(gè)三角形相似,除了對(duì)應(yīng)邊成比例、對(duì)應(yīng)角相等之外,我們還可以得到哪些結(jié)論?2.思考:(1)如果兩個(gè)三角形相似,它們的周長(zhǎng)之間有什么關(guān)系?(2)如果兩個(gè)三角形相似,它們的面積之間有什么關(guān)系?(3)兩個(gè)相似多邊形的周長(zhǎng)和面積分別有什么關(guān)系?推導(dǎo)見教材P54.結(jié)論——相似三角形的性質(zhì):性質(zhì)1相似三角形周長(zhǎng)的比等于相似比.即:如果△ABC∽△A′B′C′,且相似比為k,那么.性質(zhì)2相似三角形面積的比等于相似比的平方.即:如果△ABC∽△A′B′C′,且相似比為k,那么.相似多邊形的性質(zhì)1.相似多邊形周長(zhǎng)的比等于相似比.相似多邊形的性質(zhì)2.相似多邊形面積的比等于相似比的平方.四、例題講解例1(補(bǔ)充)已知:如圖:△ABC∽△A′B′C′,它們的周長(zhǎng)分別是60cm和72cm,且AB=15cm,B′C′=24cm,求BC、AB、A′B′、A′C′的長(zhǎng).分析:根據(jù)相似三角形周長(zhǎng)的比等于相似比可以求出BC等邊的長(zhǎng).解:略(此題學(xué)生可以讓自己完成).例2(教材P53例6)分析:根據(jù)已知可以得到,又有夾角∠D=∠A,由相似三角形的判定方法2可以得到這兩個(gè)三角形相似,且相似比為,故△DEF的周長(zhǎng)和面積可求出.解:略(見教材P54)五、課堂練習(xí)1.教材P54.1.2.填空:(1)如果兩個(gè)相似三角形對(duì)應(yīng)邊的比為3∶5,那么它們的相似比為________,周長(zhǎng)的比為_____,面積的比為_____.(2)如果兩個(gè)相似三角形面積的比為3∶5,那么它們的相似比為________,周長(zhǎng)的比為________.(3)連結(jié)三角形兩邊中點(diǎn)的線段把三角形截成的一個(gè)小三角形與原三角形的周長(zhǎng)比等于______,面積比等于_______.(4)兩個(gè)相似三角形對(duì)應(yīng)的中線長(zhǎng)分別是6cm和18cm,若較大三角形的周長(zhǎng)是42cm,面積是12cm2,則較小三角形的周長(zhǎng)為________cm3.如圖,在正方形網(wǎng)格上有△A1B1C1和△A2B2C2,這兩個(gè)三角形相似嗎?如果相似,求出△A1B1C1和△A2B六、作業(yè)1.教材P54.3、4.2.如圖,點(diǎn)D、E分別是△ABC邊AB、AC上的點(diǎn),且DE∥BC,BD=2AD,那么△ADE的周長(zhǎng)︰△ABC的周長(zhǎng)=.3.已知:如圖,△ABC中,DE∥BC,若,①求的值;②求的值;③若,求△ADE的面積;教學(xué)反思:本節(jié)的教學(xué)難點(diǎn)相似三角形性質(zhì)的靈活運(yùn)用,及對(duì)“相似三角形面積的比等于相似比的平方”性質(zhì)的理解,特別是對(duì)它的反向應(yīng)用的理解,即對(duì)“由面積比求相似比”的理解得到了很好的突破.授課班級(jí):九年級(jí)76班授課時(shí)間:2015年3月日27.3位似(一)一、教學(xué)目標(biāo)1.了解位似圖形及其有關(guān)概念,了解位似與相似的聯(lián)系和區(qū)別,掌握位似圖形的性質(zhì).2.掌握位似圖形的畫法,能夠利用作位似圖形的方法將一個(gè)圖形放大或縮?。⒅攸c(diǎn)、難點(diǎn)1.重點(diǎn):位似圖形的有關(guān)概念、性質(zhì)與作圖.2.難點(diǎn):利用位似將一個(gè)圖形放大或縮?。?.難點(diǎn)的突破方法(1)位似圖形:如果兩個(gè)多邊形不僅相似,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,這時(shí)的相似比又稱為位似比.(2)掌握位似圖形概念,需注意:①位似是一種具有位置關(guān)系的相似,所以兩個(gè)圖形是位似圖形,必定是相似圖形,而相似圖形不一定是位似圖形;②兩個(gè)位似圖形的位似中心只有一個(gè);③兩個(gè)位似圖形可能位于位似中心的兩側(cè),也可能位于位似中心的一側(cè);④位似比就是相似比.利用位似圖形的定義可判斷兩個(gè)圖形是否位似.(3)位似圖形首先是相似圖形,所以它具有相似圖形的一切性質(zhì).位似圖形是一種特殊的相似圖形,它又具有特殊的性質(zhì),位似圖形上任意一對(duì)對(duì)應(yīng)點(diǎn)到位似中心的距離等于位似比(相似比).(4)兩個(gè)位似圖形的主要特征是:每對(duì)位似對(duì)應(yīng)點(diǎn)與位似中心共線;不經(jīng)過位似中心的對(duì)應(yīng)線段平行.(5)利用位似,可以將一個(gè)圖形放大或縮小,其步驟見下面例題.作圖時(shí)要注意:①首先確定位似中心,位似中心的位置可隨意選擇;②確定原圖形的關(guān)鍵點(diǎn),如四邊形有四個(gè)關(guān)鍵點(diǎn),即它的四個(gè)頂點(diǎn);③確定位似比,根據(jù)位似比的取值,可以判斷是將一個(gè)圖形放大還是縮??;④符合要求的圖形不惟一,因?yàn)樗鞯膱D形與所確定的位似中心的位置有關(guān)(如例2),并且同一個(gè)位似中心的兩側(cè)各有一個(gè)符合要求的圖形(如例2中的圖2與圖3).三、例題的意圖本節(jié)課安排了兩個(gè)例題,例1是補(bǔ)充的一個(gè)例題,通過辨別位似圖形,鞏固位似圖形的概念,讓學(xué)生理解位似圖形必須滿足兩個(gè)條件:(1)兩個(gè)圖形是相似圖形;(2)兩個(gè)相似圖形每對(duì)對(duì)應(yīng)點(diǎn)所在的直線都經(jīng)過同一點(diǎn),二者缺一不可.例2是教材P61例題,通過例2的教學(xué),使學(xué)生掌握位似圖形的畫法,能夠利用作位似圖形的方法將一個(gè)圖形放大或縮?。v解例2時(shí),要注意引導(dǎo)學(xué)生能夠用不同的方法畫出所要求作的圖形,要讓學(xué)生通過作圖理解符合要求的圖形不惟一,這和所作的圖形與所確定的位似中心的位置有關(guān)(如位似中心O可能選在四邊形ABCD外,可能選在四邊形ABCD內(nèi),可能選在四邊形ABCD的一條邊上,可能選在四邊形ABCD的一個(gè)頂點(diǎn)上).并且同一個(gè)位似中心的兩側(cè)各有一個(gè)符合要求的圖形(如例2中的圖2與圖3),因此,位似中心的確定是作出圖形的關(guān)鍵.要及時(shí)強(qiáng)調(diào)注意的問題(見難點(diǎn)的突破方法④),及時(shí)總結(jié)作圖的步驟(見例2),并讓學(xué)生練習(xí)找所給圖形的位似中心的題目(如課堂練習(xí)2),以使學(xué)生真正掌握位似圖形的概念與作圖.四、課堂引入1.觀察:在日常生活中,我們經(jīng)常見到下面所給的這樣一類相似的圖形,它們有什么特征?2.問:已知:如圖,多邊形ABCDE,把它放大為原來的2倍,即新圖與原圖的相似比為2.應(yīng)該怎樣做?你能說出畫相似圖形的一種方法嗎?五、例題講解例1(補(bǔ)充)如圖,指出下列各圖中的兩個(gè)圖形是否是位似圖形,如果是位似圖形,請(qǐng)指出其位似中心.分析:位似圖形是特殊位置上的相似圖形,因此判斷兩個(gè)圖形是否為位似圖形,首先要看這兩個(gè)圖形是否相似,再看對(duì)應(yīng)點(diǎn)的連線是否都經(jīng)過同一點(diǎn),這兩個(gè)方面缺一不可.解:圖(1)、(2)和(4)三個(gè)圖形中的兩個(gè)圖形都是位似圖形,位似中心分別是圖(1)中的點(diǎn)A,圖(2)中的點(diǎn)P和圖(4)中的點(diǎn)O.(圖(3)中的點(diǎn)O不是對(duì)應(yīng)點(diǎn)連線的交點(diǎn),故圖(3)不是位似圖形,圖(5)也不是位似圖形)例2(教材P61例題)把圖1中的四邊形ABCD縮小到原來的.分析:把原圖形縮小到原來的,也就是使新圖形上各頂點(diǎn)到位似中心的距離與原圖形各對(duì)應(yīng)頂點(diǎn)到位似中心的距離之比為1∶2.作法一:(1)在四邊形ABCD外任取一點(diǎn)O;(2)過點(diǎn)O分別作射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得;(4)順次連接A′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以如何畫出圖形?作法二:(1)在四邊形ABCD外任取一點(diǎn)O;(2)過點(diǎn)O分別作射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD的反向延長(zhǎng)線上取點(diǎn)A′、B′、C′、D′,使得;(4)順次連接A′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖3.作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過點(diǎn)O分別作射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得;(4)順次連接A′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)六、課堂練習(xí)1.教材P61.1、22.畫出所給圖中的位似中心.3.把右圖中的五邊形ABCDE擴(kuò)大到原來的2倍.七、課后練習(xí)1.教材P65.1、2、42.已知:如圖,△ABC,畫△A′B′C′,使△A′B′C′∽△ABC,且使相似比為1.5,要求:(1)位似中心在△ABC的外部;(2)位似中心在△ABC的內(nèi)部;(3)位似中心在△ABC的一條邊上;(4)以點(diǎn)C為位似中心.教學(xué)反思:本節(jié)屬于選學(xué)內(nèi)容,指導(dǎo)學(xué)生自學(xué)完成,只需對(duì)位似圖形的定義及特征有基本的了解則可.授課班級(jí):九年級(jí)76班授課時(shí)間:2015年3月日27.3位似(二)一、教學(xué)目標(biāo)1.鞏固位似圖形及其有關(guān)概念.2.會(huì)用圖形的坐標(biāo)的變化來表示圖形的位似變換,掌握把一個(gè)圖形按一定大小比例放大或縮小后,點(diǎn)的坐標(biāo)變化的規(guī)律.3.了解四種變換(平移、軸對(duì)稱、旋轉(zhuǎn)和位似)的異同,并能在復(fù)雜圖形中找出這些變換.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):用圖形的坐標(biāo)的變化來表示圖形的位似變換.2.難點(diǎn):把一個(gè)圖形按一定大小比例放大或縮小后,點(diǎn)的坐標(biāo)變化的規(guī)律.3.難點(diǎn)的突破方法(1)相似與軸對(duì)稱、平移、旋轉(zhuǎn)一樣,也是圖形之間的一個(gè)基本變換,因此一些特殊的相似(如位似)也可以用圖形坐標(biāo)的變化來表示.(2)帶領(lǐng)學(xué)生共同探究出位似變換中對(duì)應(yīng)點(diǎn)的坐標(biāo)的變化規(guī)律:在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或-k.(3)在平面直角坐標(biāo)系中,用圖形的坐標(biāo)的變化來表示圖形的位似變換的關(guān)鍵是要確定位似圖形各個(gè)頂點(diǎn)的坐標(biāo),而不同方法得到的圖形坐標(biāo)是不同的.如:已知:△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3),B(2,0),C(6,2),以點(diǎn)O為位似中心,相似比為2,將△ABC放大,根據(jù)前面(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論