曲靖市沾益區(qū)大坡鄉(xiāng)中考聯(lián)考數(shù)學試題及答案解析_第1頁
曲靖市沾益區(qū)大坡鄉(xiāng)中考聯(lián)考數(shù)學試題及答案解析_第2頁
曲靖市沾益區(qū)大坡鄉(xiāng)中考聯(lián)考數(shù)學試題及答案解析_第3頁
曲靖市沾益區(qū)大坡鄉(xiāng)中考聯(lián)考數(shù)學試題及答案解析_第4頁
曲靖市沾益區(qū)大坡鄉(xiāng)中考聯(lián)考數(shù)學試題及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

曲靖市沾益區(qū)大坡鄉(xiāng)中考聯(lián)考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.剪紙是水族的非物質文化遺產之一,下列剪紙作品是中心對稱圖形的是()A. B.C. D.2.二次函數(shù)y=(2x-1)2+2的頂點的坐標是()A.(1,2) B.(1,-2) C.(,2)

D.(-,-2)3.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數(shù)關系.則下列說法正確的是()A.兩車同時到達乙地B.轎車在行駛過程中進行了提速C.貨車出發(fā)3小時后,轎車追上貨車D.兩車在前80千米的速度相等4.周末小麗從家里出發(fā)騎單車去公園,因為她家與公園之間是一條筆直的自行車道,所以小麗騎得特別放松.途中,她在路邊的便利店挑選一瓶礦泉水,耽誤了一段時間后繼續(xù)騎行,愉快地到了公園.圖中描述了小麗路上的情景,下列說法中錯誤的是()A.小麗從家到達公園共用時間20分鐘 B.公園離小麗家的距離為2000米C.小麗在便利店時間為15分鐘 D.便利店離小麗家的距離為1000米5.一、單選題二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結論有:A.4個 B.3個 C.2個 D.1個6.如圖,直線a∥b,點A在直線b上,∠BAC=100°,∠BAC的兩邊與直線a分別交于B、C兩點,若∠2=32°,則∠1的大小為()A.32° B.42° C.46° D.48°7.(3分)如圖,是按一定規(guī)律排成的三角形數(shù)陣,按圖中數(shù)陣的排列規(guī)律,第9行從左至右第5個數(shù)是()A.2 B. C.5 D.8.如圖是一個正方體被截去一角后得到的幾何體,從上面看得到的平面圖形是()A. B. C. D.9.如圖,已知第一象限內的點A在反比例函數(shù)y=2x上,第二象限的點B在反比例函數(shù)y=kxA.﹣22 B.4 C.﹣4 D.2210.的絕對值是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知一次函數(shù)y=kx+2k+3的圖象與y軸的交點在y軸的正半軸上,且函數(shù)值y隨x的增大而減小,則k所能取到的整數(shù)值為________.12.已知一個多邊形的每一個外角都等于,則這個多邊形的邊數(shù)是.13.點(-1,a)、(-2,b)是拋物線上的兩個點,那么a和b的大小關系是a_______b(填“>”或“<”或“=”).14.如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.15.將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數(shù)為x﹣3,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,若將△ABC向右滾動,則x的值等于_____,數(shù)字2012對應的點將與△ABC的頂點_____重合.16.已知正方形ABCD的邊長為8,E為平面內任意一點,連接DE,將線段DE繞點D順時針旋轉90°得到DG,當點B,D,G在一條直線上時,若DG=2,則CE的長為_____.17.已知點A(x1,y1)、B(x2,y2)在直線y=kx+b上,且直線經過第一、二、四象限,當x1<x2時,y1與y2的大小關系為________.三、解答題(共7小題,滿分69分)18.(10分)已知Rt△ABC,∠A=90°,BC=10,以BC為邊向下作矩形BCDE,連AE交BC于F.(1)如圖1,當AB=AC,且sin∠BEF=時,求的值;(2)如圖2,當tan∠ABC=時,過D作DH⊥AE于H,求的值;(3)如圖3,連AD交BC于G,當時,求矩形BCDE的面積19.(5分)我國滬深股市交易中,如果買、賣一次股票均需付交易金額的作費用.張先生以每股5元的價格買入“西昌電力”股票1000股,若他期望獲利不低于1000元,問他至少要等到該股票漲到每股多少元時才能賣出?(精確到0.01元)20.(8分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結合圖象,直接寫出t的取值范圍:______;③當直線x=t經過點A時,“L雙拋圖形”如圖所示,現(xiàn)將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.21.(10分)如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.求此拋物線的解析式;求C、D兩點坐標及△BCD的面積;若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標.22.(10分)某市教育局為了了解初一學生第一學期參加社會實踐活動的情況,隨機抽查了本市部分初一學生第一學期參加社會實踐活動的天數(shù),并將得到的數(shù)據(jù)繪制成了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:扇形統(tǒng)計圖中a的值為%,該扇形圓心角的度數(shù)為;補全條形統(tǒng)計圖;如果該市共有初一學生20000人,請你估計“活動時間不少于5天”的大約有多少人?23.(12分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.24.(14分)已知:a是﹣2的相反數(shù),b是﹣2的倒數(shù),則(1)a=_____,b=_____;(2)求代數(shù)式a2b+ab的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、是中心對稱圖形,故此選項正確;故選:D.【點睛】此題主要考查了中心對稱圖形,關鍵是掌握中心對稱圖形的定義.2、C【解析】試題分析:二次函數(shù)y=(2x-1)+2即的頂點坐標為(,2)考點:二次函數(shù)點評:本題考查二次函數(shù)的頂點坐標,考生要掌握二次函數(shù)的頂點式與其頂點坐標的關系3、B【解析】

①根據(jù)函數(shù)的圖象即可直接得出結論;②求得直線OA和DC的解析式,求得交點坐標即可;③由圖象無法求得B的橫坐標;④分別進行運算即可得出結論.【詳解】由題意和圖可得,轎車先到達乙地,故選項A錯誤,轎車在行駛過程中進行了提速,故選項B正確,貨車的速度是:300÷5=60千米/時,轎車在BC段對應的速度是:千米/時,故選項D錯誤,設貨車對應的函數(shù)解析式為y=kx,5k=300,得k=60,即貨車對應的函數(shù)解析式為y=60x,設CD段轎車對應的函數(shù)解析式為y=ax+b,,得,即CD段轎車對應的函數(shù)解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發(fā)3.9小時后,轎車追上貨車,故選項C錯誤,故選:B.【點睛】此題考查一次函數(shù)的應用,解題的關鍵在于利用題中信息列出函數(shù)解析式4、C【解析】解:A.小麗從家到達公園共用時間20分鐘,正確;B.公園離小麗家的距離為2000米,正確;C.小麗在便利店時間為15﹣10=5分鐘,錯誤;D.便利店離小麗家的距離為1000米,正確.故選C.5、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數(shù)圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當x=2時的點對稱,即當x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結論有3個.故選B.6、D【解析】

根據(jù)平行線的性質與對頂角的性質求解即可.【詳解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案選D.【點睛】本題考查了平行線的性質,解題的關鍵是熟練的掌握平行線的性質與對頂角的性質.7、B【解析】

根據(jù)三角形數(shù)列的特點,歸納出每一行第一個數(shù)的通用公式,即可求出第9行從左至右第5個數(shù).【詳解】根據(jù)三角形數(shù)列的特點,歸納出每n行第一個數(shù)的通用公式是,所以,第9行從左至右第5個數(shù)是=.故選B【點睛】本題主要考查歸納推理的應用,根據(jù)每一行第一個數(shù)的取值規(guī)律,利用累加法求出第9行第五個數(shù)的數(shù)值是解決本題的關鍵,考查學生的推理能力.8、B【解析】

根據(jù)俯視圖是從上面看到的圖形可得俯視圖為正方形以及右下角一個三角形.【詳解】從上面看,是正方形右邊有一條斜線,如圖:故選B.【點睛】考查了三視圖的知識,根據(jù)俯視圖是從物體的上面看得到的視圖得出是解題關鍵.9、C【解析】試題分析:作AC⊥x軸于點C,作BD⊥x軸于點D.則∠BDO=∠ACO=90°,則∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故選C.考點:1.相似三角形的判定與性質;2.反比例函數(shù)圖象上點的坐標特征.10、C【解析】

根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義即可解決.【詳解】在數(shù)軸上,點到原點的距離是,所以,的絕對值是,故選C.【點睛】錯因分析

容易題,失分原因:未掌握絕對值的概念.二、填空題(共7小題,每小題3分,滿分21分)11、-2【解析】試題分析:根據(jù)題意可得2k+3>2,k<2,解得﹣<k<2.因k為整數(shù),所以k=﹣2.考點:一次函數(shù)圖象與系數(shù)的關系.12、5【解析】

∵多邊形的每個外角都等于72°,∵多邊形的外角和為360°,∴360°÷72°=5,∴這個多邊形的邊數(shù)為5.故答案為5.13、<【解析】把點(-1,a)、(-2,b)分別代入拋物線,則有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案為<.14、【解析】【分析】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長,根據(jù)相似三角形對應邊的比可得結論.【詳解】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB?AC=BC?AF,∴3×6=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是,故答案為.【點睛】本題考查軸對稱﹣最短問題、三角形相似的性質和判定、兩點之間線段最短、垂線段最短等知識,解題的關鍵是靈活運用軸對稱以及垂線段最短解決最短問題.15、﹣1C.【解析】∵將數(shù)軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數(shù)為x﹣1,點B表示的數(shù)為2x+1,點C表示的數(shù)為﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的數(shù)為:x﹣1=﹣1﹣1=﹣6,點B表示的數(shù)為:2x+1=2×(﹣1)+1=﹣5,即等邊三角形ABC邊長為1,數(shù)字2012對應的點與﹣4的距離為:2012+4=2016,∵2016÷1=672,C從出發(fā)到2012點滾動672周,∴數(shù)字2012對應的點將與△ABC的頂點C重合.故答案為﹣1,C.點睛:此題主要考查了等邊三角形的性質,實數(shù)與數(shù)軸,一元一次方程等知識,本題將數(shù)與式的考查有機地融入“圖形與幾何”中,滲透“數(shù)形結合思想”、“方程思想”等,也是一道較優(yōu)秀的操作活動型問題.16、2或2.【解析】

本題有兩種情況,一種是點在線段的延長線上,一種是點在線段上,解題過程一樣,利用正方形和三角形的有關性質,求出、的值,再由勾股定理求出的值,根據(jù)證明,可得,即可得到的長.【詳解】解:當點在線段的延長線上時,如圖3所示.過點作于,是正方形的對角線,,,在中,由勾股定理,得:,在和中,,,,當點在線段上時,如圖4所示.過作于.是正方形的對角線,,在中,由勾股定理,得:在和中,,,,故答案為或.【點睛】本題主要考查了勾股定理和三角形全等的證明.17、y1>y1【解析】分析:直接利用一次函數(shù)的性質分析得出答案.詳解:∵直線經過第一、二、四象限,∴y隨x的增大而減小,∵x1<x1,∴y1與y1的大小關系為:y1>y1.故答案為:>.點睛:此題主要考查了一次函數(shù)圖象上點的坐標特征,正確掌握一次函數(shù)增減性是解題關鍵.三、解答題(共7小題,滿分69分)18、(1);(2)80;(3)100.【解析】

(1)過A作AK⊥BC于K,根據(jù)sin∠BEF=得出,設FK=3a,AK=5a,可求得BF=a,故;(2)過A作AK⊥BC于K,延長AK交ED于G,則AG⊥ED,得△EGA∽△EHD,利用相似三角形的性質即可求出;(3)延長AB、ED交于K,延長AC、ED交于T,根據(jù)相似三角形的性質可求出BE=ED,故可求出矩形的面積.【詳解】解:(1)過A作AK⊥BC于K,∵sin∠BEF=,sin∠FAK=,∴,設FK=3a,AK=5a,∴AK=4a,∵AB=AC,∠BAC=90°,∴BK=CK=4a,∴BF=a,又∵CF=7a,∴(2)過A作AK⊥BC于K,延長AK交ED于G,則AG⊥ED,∵∠AGE=∠DHE=90°,∴△EGA∽△EHD,∴,∴,其中EG=BK,∵BC=10,tan∠ABC=,cos∠ABC=,∴BA=BC·cos∠ABC=,BK=BA·cos∠ABC=∴EG=8,另一方面:ED=BC=10,∴EH·EA=80(3)延長AB、ED交于K,延長AC、ED交于T,∵BC∥KT,,∴,同理:∵FG2=BF·CG∴,∴ED2=KE·DT∴,又∵△KEB∽△CDT,∴,∴KE·DT=BE2,∴BE2=ED2∴BE=ED∴【點睛】此題主要考查相似三角形的判定與性質,解題的關鍵根據(jù)題意作出輔助線再進行求解.19、至少漲到每股6.1元時才能賣出.【解析】

根據(jù)關系式:總售價-兩次交易費≥總成本+1000列出不等式求解即可.【詳解】解:設漲到每股x元時賣出,根據(jù)題意得1000x-(5000+1000x)×0.5%≥5000+1000,解這個不等式得x≥,即x≥6.1.答:至少漲到每股6.1元時才能賣出.【點睛】本題考查的是一元一次不等式在生活中的實際運用,解決本題的關鍵是讀懂題意根據(jù)“總售價-兩次交易費≥總成本+1000”列出不等關系式.20、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)【解析】

(1)令y=0得:x2-1x+3=0,然后求得方程的解,從而可得到A、B的坐標,然后再求得拋物線的對稱軸為x=2,最后將x=2代入可求得點C的縱坐標;(2)①拋物線與y軸交點坐標為(0,3),然后做出直線y=3,然后找出交點個數(shù)即可;②將y=3代入拋物線的解析式求得對應的x的值,從而可得到直線y=3與“L雙拋圖形”恰好有3個交點時t的取值,然后結合函數(shù)圖象可得到“L雙拋圖形”與直線y=3恰好有兩個交點時t的取值范圍;③首先證明四邊形ACQP為平行四邊形,由可得到點P的縱坐標為1,然后由函數(shù)解析式可求得點P的橫坐標.【詳解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴拋物線的對稱軸為x=2,將x=2代入拋物線的解析式得:y=-1,∴C(2,-1);(2)①將x=0代入拋物線的解析式得:y=3,∴拋物線與y軸交點坐標為(0,3),如圖所示:作直線y=3,由圖象可知:直線y=3與“L雙拋圖形”有3個交點,故答案為3;②將y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函數(shù)圖象可知:當0<t<1時,拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,故答案為0<t<1.③如圖2所示:∵PQ∥AC且PQ=AC,∴四邊形ACQP為平行四邊形,又∵點C的縱坐標為-1,∴點P的縱坐標為1,將y=1代入拋物線的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.∴點P的坐標為(+2,1)或(-+2,1),當點P(-1,0)時,也滿足條件.綜上所述,滿足條件的點(+2,1)或(-+2,1)或(-1,0)【點睛】本題主要考查的是二次函數(shù)的綜合應用,解答本題需要同學們理解“L雙拋圖形”的定義,數(shù)形結合以及方程思想的應用是解題的關鍵.21、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】

(1)設拋物線頂點式解析式y(tǒng)=a(x-1)2+4,然后把點B的坐標代入求出a的值,即可得解;

(2)令y=0,解方程得出點C,D坐標,再用三角形面積公式即可得出結論;

(3)先根據(jù)面積關系求出點P的坐標,求出點P的縱坐標,代入拋物線解析式即可求出點P的坐標.【詳解】解:(1)、∵拋物線的頂點為A(1,4),∴設拋物線的解析式y(tǒng)=a(x﹣1)2+4,把點B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論