![2023-2024學(xué)年山西省忻州實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view2/M03/35/05/wKhkFmZiXCiAeK5aAAI9EhV2xtk723.jpg)
![2023-2024學(xué)年山西省忻州實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view2/M03/35/05/wKhkFmZiXCiAeK5aAAI9EhV2xtk7232.jpg)
![2023-2024學(xué)年山西省忻州實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view2/M03/35/05/wKhkFmZiXCiAeK5aAAI9EhV2xtk7233.jpg)
![2023-2024學(xué)年山西省忻州實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view2/M03/35/05/wKhkFmZiXCiAeK5aAAI9EhV2xtk7234.jpg)
![2023-2024學(xué)年山西省忻州實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view2/M03/35/05/wKhkFmZiXCiAeK5aAAI9EhV2xtk7235.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山西省忻州實(shí)驗(yàn)中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若兩個(gè)非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.2.已知,,,是球的球面上四個(gè)不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.3.已知正三棱錐的所有頂點(diǎn)都在球的球面上,其底面邊長為4,、、分別為側(cè)棱,,的中點(diǎn).若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.4.已知在平面直角坐標(biāo)系中,圓:與圓:交于,兩點(diǎn),若,則實(shí)數(shù)的值為()A.1 B.2 C.-1 D.-25.復(fù)數(shù)滿足,則()A. B. C. D.6.記遞增數(shù)列的前項(xiàng)和為.若,,且對中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.7.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件8.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.9.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.10.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.11.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.12.已知變量,滿足不等式組,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數(shù)是______.14.已知正實(shí)數(shù)滿足,則的最小值為.15.若為假,則實(shí)數(shù)的取值范圍為__________.16.的二項(xiàng)展開式中,含項(xiàng)的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是各項(xiàng)都為正數(shù)的數(shù)列,其前項(xiàng)和為,且為與的等差中項(xiàng).(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求的前100項(xiàng)和.18.(12分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.19.(12分)《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個(gè)等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、、、.選考科目成績計(jì)入考生總成績時(shí),將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到、、、、、、、八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級成績.某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個(gè)選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布.(1)求物理原始成績在區(qū)間的人數(shù);(2)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記表示這3人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學(xué)期望.(附:若隨機(jī)變量,則,,)20.(12分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計(jì),顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(?。┣蟮姆植剂校唬áⅲ┤?,求的數(shù)學(xué)期望的最大值.21.(12分)在平面直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點(diǎn)的極坐標(biāo).22.(10分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動點(diǎn)(的長度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點(diǎn)睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運(yùn)算性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中等題.2、A【解析】
由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.3、D【解析】
如圖,平面截球所得截面的圖形為圓面,計(jì)算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點(diǎn)記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點(diǎn)睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.4、D【解析】
由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個(gè)圓心的連線上,從而可求.【詳解】因?yàn)椋設(shè)在AB的中垂線上,即O在兩個(gè)圓心的連線上,,,三點(diǎn)共線,所以,得,故選D.【點(diǎn)睛】本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.5、C【解析】
利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解:,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.6、D【解析】
由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.7、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.8、B【解析】
設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.9、A【解析】
先根據(jù)函數(shù)奇偶性求得,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域?yàn)?,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點(diǎn)睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.10、C【解析】
根據(jù)題目中的基底定義求解.【詳解】因?yàn)?,,,,,,所以能作為集合的基底,故選:C【點(diǎn)睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.11、A【解析】
由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.12、B【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.【點(diǎn)睛】本題主要考查簡單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先將原式展開成,發(fā)現(xiàn)中不含,故只研究后面一項(xiàng)即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40【點(diǎn)睛】本題考查二項(xiàng)式定理性質(zhì),關(guān)鍵是先展開再利用排列組合思想解決,屬于基礎(chǔ)題.14、4【解析】
由題意結(jié)合代數(shù)式的特點(diǎn)和均值不等式的結(jié)論整理計(jì)算即可求得最終結(jié)果.【詳解】.當(dāng)且僅當(dāng)時(shí)等號成立.據(jù)此可知:的最小值為4.【點(diǎn)睛】條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個(gè)量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值.15、【解析】
由為假,可知為真,所以對任意實(shí)數(shù)恒成立,求出的最小值,令即可.【詳解】因?yàn)闉榧?,則其否定為真,即為真,所以對任意實(shí)數(shù)恒成立,所以.又,當(dāng)且僅當(dāng),即時(shí),等號成立,所以.故答案為:.【點(diǎn)睛】本題考查全稱命題與特稱命題間的關(guān)系的應(yīng)用,利用參變分離是解決本題的關(guān)鍵,屬于中檔題.16、【解析】
寫出二項(xiàng)展開式的通項(xiàng),然后取的指數(shù)為求得的值,則項(xiàng)的系數(shù)可求得.【詳解】,由,可得.含項(xiàng)的系數(shù)為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)式定理展開式、需熟記二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)利用已知條件化簡出,當(dāng)時(shí),,當(dāng)時(shí),再利用進(jìn)行化簡,得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項(xiàng)公式,再化簡出,可直接求出的前100項(xiàng)和.【詳解】解:(1)由題意知,即,①當(dāng)時(shí),由①式可得;又時(shí),有,代入①式得,整理得,∴是首項(xiàng)為1,公差為1的等差數(shù)列.(2)由(1)可得,∵是各項(xiàng)都為正數(shù),∴,∴,又,∴,則,,即:.∴的前100項(xiàng)和.【點(diǎn)睛】本題考查數(shù)列遞推關(guān)系的應(yīng)用,通項(xiàng)公式的求法以及裂項(xiàng)相消法求和,考查分析解題能力和計(jì)算能力.18、(1);(2)【解析】
試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關(guān)系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設(shè)條件,得,∴.由,得,∴,∴.點(diǎn)睛:解決三角形中的角邊問題時(shí),要根據(jù)條件選擇正余弦定理,將問題轉(zhuǎn)化統(tǒng)一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內(nèi)角和定理的運(yùn)用,涉及三角形面積最值問題時(shí),注意均值不等式的利用,特別求角的時(shí)候,要注意分析角的范圍,才能寫出角的大小.19、(Ⅰ)1636人;(Ⅱ)見解析.【解析】
(Ⅰ)根據(jù)正態(tài)曲線的對稱性,可將區(qū)間分為和兩種情況,然后根據(jù)特殊區(qū)間上的概率求出成績在區(qū)間內(nèi)的概率,進(jìn)而可求出相應(yīng)的人數(shù);(Ⅱ)由題意得成績在區(qū)間[61,80]的概率為,且,由此可得的分布列和數(shù)學(xué)期望.【詳解】(Ⅰ)因?yàn)槲锢碓汲煽?,所以.所以物理原始成績在?7,86)的人數(shù)為(人).(Ⅱ)由題意得,隨機(jī)抽取1人,其成績在區(qū)間[61,80]內(nèi)的概率為.所以隨機(jī)抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123所以數(shù)學(xué)期望.【點(diǎn)睛】(1)解答第一問的關(guān)鍵是利用正態(tài)分布的三個(gè)特殊區(qū)間表示所求概率的區(qū)間,再根據(jù)特殊區(qū)間上的概率求解,解題時(shí)注意結(jié)合正態(tài)曲線的對稱性.(2)解答第二問的關(guān)鍵是判斷出隨機(jī)變量服從二項(xiàng)分布,然后可得分布列及其數(shù)學(xué)期望.當(dāng)被抽取的總體的容量較大時(shí),抽樣可認(rèn)為是等可能的,進(jìn)而可得隨機(jī)變量服從二項(xiàng)分布.20、(Ⅰ)0.288(Ⅱ)(?。┮娊馕觯áⅲ?shù)學(xué)期望的最大值為280【解析】
(Ⅰ)根據(jù)題意,設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨(dú)立重復(fù)事件的特點(diǎn)得出,利用二項(xiàng)分布的概率公式,即可求出結(jié)果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學(xué)期望,結(jié)合,即可算出的最大值.【詳解】解:(Ⅰ)設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基建科前期服務(wù)范本合同
- 綠色田園工程建設(shè)作業(yè)指導(dǎo)書
- 業(yè)主裝修工程合同
- 全新運(yùn)輸合同終止協(xié)議書
- 物流行業(yè)最佳實(shí)踐指南
- 企業(yè)人力資源薪酬福利管理作業(yè)指導(dǎo)書
- 商品房買賣預(yù)售合同
- 旋挖鉆機(jī)買賣合同
- 個(gè)人股權(quán)轉(zhuǎn)讓協(xié)議書
- 借款合同法律常識
- 電鍍產(chǎn)業(yè)園項(xiàng)目可行性研究報(bào)告(專業(yè)經(jīng)典案例)
- 2025年魯泰集團(tuán)招聘170人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024-2025學(xué)年成都高新區(qū)七上數(shù)學(xué)期末考試試卷【含答案】
- 企業(yè)員工食堂管理制度框架
- 《辣椒主要病蟲害》課件
- 2024年煤礦安全生產(chǎn)知識培訓(xùn)考試必答題庫及答案(共190題)
- SLT824-2024 水利工程建設(shè)項(xiàng)目文件收集與歸檔規(guī)范
- (完整word版)中國銀行交易流水明細(xì)清單模版
- DB43∕T 859-2014 高速公路機(jī)電工程概預(yù)算編制辦法及定額
- 燃?xì)廨啓C(jī)LM2500介紹
- (精選)淺談在小學(xué)數(shù)學(xué)教學(xué)中如何進(jìn)行有效提問
評論
0/150
提交評論