2025屆內(nèi)蒙古呼倫貝爾市高一下數(shù)學(xué)期末統(tǒng)考試題含解析_第1頁
2025屆內(nèi)蒙古呼倫貝爾市高一下數(shù)學(xué)期末統(tǒng)考試題含解析_第2頁
2025屆內(nèi)蒙古呼倫貝爾市高一下數(shù)學(xué)期末統(tǒng)考試題含解析_第3頁
2025屆內(nèi)蒙古呼倫貝爾市高一下數(shù)學(xué)期末統(tǒng)考試題含解析_第4頁
2025屆內(nèi)蒙古呼倫貝爾市高一下數(shù)學(xué)期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆內(nèi)蒙古呼倫貝爾市高一下數(shù)學(xué)期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某公司的班車在和三個時間點發(fā)車.小明在至之間到達(dá)發(fā)車站乘坐班車,且到達(dá)發(fā)車站的時刻是隨機(jī)的,則他等車時間不超過分鐘的概率是()A. B. C. D.2.在空間直角坐標(biāo)系中,點關(guān)于平面對稱的點的坐標(biāo)為()A. B. C. D.3.設(shè)等差數(shù)列{an}的前n項和為Sn,a2+a4=6,則S5等于()A.10 B.12 C.15 D.304.已知圓,設(shè)平面區(qū)域,若圓心,且圓與軸相切,則的最大值為()A.5 B.29 C.37 D.495.已知數(shù)列是公差不為零的等差數(shù)列,函數(shù)是定義在上的單調(diào)遞增的奇函數(shù),數(shù)列的前項和為,對于命題:①若數(shù)列為遞增數(shù)列,則對一切,②若對一切,,則數(shù)列為遞增數(shù)列③若存在,使得,則存在,使得④若存在,使得,則存在,使得其中正確命題的個數(shù)為()A.0 B.1 C.2 D.36.已知函數(shù),若方程有5個解,則的取值范圍是()A. B. C. D.7.長方體中,已知,,棱在平面內(nèi),則長方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍是()A. B. C. D.8.已知點,,則與向量方向相同的單位向量為()A. B. C. D.9.兩條直線和,,在同一直角坐標(biāo)系中的圖象可能是()A. B.C. D.10.已知向量=(3,4),=(2,1),則向量與夾角的余弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)為,的反函數(shù),則的值域為______.12.已知a,b,x均為正數(shù),且a>b,則____(填“>”、“<”或“=”).13.如圖,為測量山高,選擇和另一座山的山頂為測量觀測點,從點測得的仰角,點的仰角以及;從點測得;已知山高,則山高_(dá)_________.14.長時間的低頭,對人的身體如頸椎、眼睛等會造成定的損害,為了了解某群體中“低頭族”的比例,現(xiàn)從該群體包含老、中、青三個年齡段的人中采用分層抽樣的方法抽取人進(jìn)行調(diào)查,已知這人里老、中、青三個年齡段的分配比例如圖所示,則這個群體里青年人人數(shù)為_____15.在平面直角坐標(biāo)系xOy中,角與角均以O(shè)x為始邊,它們的終邊關(guān)于y軸對稱.若,則________.16.若數(shù)列滿足(),且,,__.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=sin22x-π4(1)求當(dāng)t=1時,求fπ(2)求gt(3)當(dāng)-12≤t≤1時,要使關(guān)于t的方程g(t)=18.現(xiàn)有8名奧運會志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.(1)求被選中的概率;(2)求和不全被選中的概率.19.某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率;(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);20.近期,某公交公司分別推出支付寶和徽信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表l所示:表1根據(jù)以上數(shù)據(jù),繪制了如右圖所示的散點圖.(1)根據(jù)散點圖判斷,在推廣期內(nèi),y=a+bx與(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求y關(guān)于x的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次;參考數(shù)據(jù):其中υ參考公式:對于一組數(shù)據(jù)u1,υ1,21.在平面直角坐標(biāo)系中,點,點P在x軸上(1)若,求點P的坐標(biāo):(2)若的面積為10,求點P的坐標(biāo).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)題意得小明等車時間不超過分鐘的總的時間段,再由比值求得.【詳解】小明等車時間不超過分鐘,則他需在至到,或至到,共計分鐘,所以概率故選A.【點睛】本題考查幾何概型,關(guān)鍵找到滿足條件的時間段,屬于基礎(chǔ)題.2、C【解析】

縱豎坐標(biāo)不變,橫坐標(biāo)變?yōu)橄喾磾?shù).【詳解】點關(guān)于平面對稱的點的坐標(biāo)為.故選C.【點睛】本題考查空間直角坐標(biāo)系,屬于基礎(chǔ)題.3、C【解析】因為等差數(shù)列{an}中,a2+a4=6,故a1+a5=6,所以S5===15.故選C.4、C【解析】試題分析:作出可行域如圖,圓C:(x-a)2+(y-b)2=1的圓心為,半徑的圓,因為圓心C∈Ω,且圓C與x軸相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由圖像可知當(dāng)圓心C位于B點時,取得最大值,B點的坐標(biāo)為,即時是最大值.考點:線性規(guī)劃綜合問題.5、C【解析】

利用函數(shù)奇偶性和單調(diào)性,通過舉例和證明逐項分析.【詳解】①取,,則,故①錯;②對一切,,則,又因為是上的單調(diào)遞增函數(shù),所以,若遞減,設(shè),且,且,所以,則,則,與題設(shè)矛盾,所以遞增,故②正確;③取,則,,令,所以,但是,故③錯誤;④因為,所以,所以,則,則,則存在,使得,故④正確.故選:C.【點睛】本題函數(shù)性質(zhì)與數(shù)列的綜合,難度較難.分析存在性問題時,如果比較難分析,也可以從反面去舉例子說明命題不成立,這也是一種常規(guī)思路.6、D【解析】

利用因式分解法,求出方程的解,結(jié)合函數(shù)的性質(zhì),根據(jù)題意可以求出的取值范圍.【詳解】,,或,由題意可知:,由題可知:當(dāng)時,有2個解且有2個解且,當(dāng)時,,因為,所以函數(shù)是偶函數(shù),當(dāng)時,函數(shù)是減函數(shù),故有,函數(shù)是偶函數(shù),所以圖象關(guān)于縱軸對稱,即當(dāng)時有,,所以,綜上所述;的取值范圍是,故本題選D.【點睛】本題考查了已知方程解的情況求參數(shù)取值問題,正確分析函數(shù)的性質(zhì),是解題的關(guān)鍵.7、A【解析】

本題等價于求過BC直線的平面截長方體的面積的取值范圍?!驹斀狻块L方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍等價于,求過BC直線的平面截長方體的面積的取值范圍。由圖形知,,故選A.【點睛】將問題等價轉(zhuǎn)換為可視的問題。8、A【解析】

由題得,設(shè)與向量方向相同的單位向量為,其中,利用列方程即可得解.【詳解】由題可得:,設(shè)與向量方向相同的單位向量為,其中,則,解得:或(舍去)所以與向量方向相同的單位向量為故選A【點睛】本題主要考查了單位向量的概念及方程思想,還考查了平面向量共線定理的應(yīng)用,考查計算能力,屬于較易題.9、A【解析】

由方程得出直線的截距,逐個選項驗證即可.【詳解】由截距式方程可得直線的橫、縱截距分別為,直線的橫、縱截距分別為選項A,由的圖象可得,可得直線的截距均為正數(shù),故A正確;選項B,只有當(dāng)時,才有直線平行,故B錯誤;選項C,只有當(dāng)時,才有直線的縱截距相等,故C錯誤;選項D,由的圖象可得,可得直線的橫截距為正數(shù),縱截距為負(fù)數(shù),由圖像不對應(yīng),故D錯誤;故選:A【點睛】本題考查了直線的截距式方程,需理解截距的定義,屬于基礎(chǔ)題.10、A【解析】

由向量的夾角公式計算.【詳解】由已知,,.∴.故選A.【點睛】本題考查平面向量的數(shù)量積,掌握數(shù)量積公式是解題基礎(chǔ).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

求出原函數(shù)的值域可得出其反函數(shù)的定義域,取交集可得出函數(shù)的定義域,再由函數(shù)的單調(diào)性可求出該函數(shù)的值域.【詳解】函數(shù)在上為增函數(shù),則函數(shù)的值域為,所以,函數(shù)的定義域為.函數(shù)的定義域為,由于函數(shù)與函數(shù)單調(diào)性相同,可知,函數(shù)在上為增函數(shù).當(dāng)時,函數(shù)取得最小值;當(dāng)時,函數(shù)取得最大值.因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,考查函數(shù)單調(diào)性的應(yīng)用,明確兩個互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.12、<【解析】

直接利用作差比較法解答.【詳解】由題得,因為a>0,x+a>0,b-a<0,x>0,所以所以.故答案為<【點睛】本題主要考查作差比較法,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.13、【解析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.14、【解析】

根據(jù)餅狀圖得到青年人的分配比例;利用總數(shù)乘以比例即可得到青年人的人數(shù).【詳解】由餅狀圖可知青年人的分配比例為:這個群體里青年人的人數(shù)為:人本題正確結(jié)果:【點睛】本題考查分層抽樣知識的應(yīng)用,屬于基礎(chǔ)題.15、【解析】

由題意得出,結(jié)合誘導(dǎo)公式,二倍角公式求解即可.【詳解】,則角的終邊可能在第一、二象限由圖可知,無論角的終邊在第一象限還是第二象限,都有故答案為:【點睛】本題主要考查了利用二倍角的余弦公式以及誘導(dǎo)公式化簡求值,屬于基礎(chǔ)題.16、1【解析】

由數(shù)列滿足,即,得到數(shù)列的奇數(shù)項和偶數(shù)項分別構(gòu)成公比為的等比數(shù)列,利用等比數(shù)列的極限的求法,即可求解.【詳解】由題意,數(shù)列滿足,即,又由,,所以數(shù)列的奇數(shù)項構(gòu)成首項為1,公比為,偶數(shù)項構(gòu)成首項為,公比為的等比數(shù)列,當(dāng)為奇數(shù)時,可得,當(dāng)為偶數(shù)時,可得.所以.故答案為:1.【點睛】本題主要考查了等比數(shù)列的定義,以及無窮等比數(shù)列的極限的計算,其中解答中得出數(shù)列的奇數(shù)項和偶數(shù)項分別構(gòu)成公比為的等比數(shù)列是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)-4(2)g(t)=t2【解析】

(1)直接代入計算得解;(2)先求出sin(2x-π4)∈[-12,1]【詳解】(1)當(dāng)t=1時,f(x)=sin22x-(2)因為x∈[π24,πf(x)=[sin(2x-當(dāng)t<-12時,則當(dāng)sin當(dāng)-12≤t≤1時,則當(dāng)當(dāng)t>1時,則當(dāng)sin(2x-π故g(t)=(3)當(dāng)-12≤t≤1時,g(t)=-6t+1,令欲使g(t)=kt2-9有一個實根,則只需h(-解得k≤-2或所以k的范圍:(-【點睛】本題主要考查三角函數(shù)的范圍的計算,考查二次函數(shù)的最值的求法和方程的零點問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.18、(1);(2).【解析】

(1)從8人中選出日語、俄語和韓語志愿者各1名,其一切可能的結(jié)果組成的基本事件空間{,,,,,,,,}由18個基本事件組成.由于每一個基本事件被抽取的機(jī)會均等,因此這些基本事件的發(fā)生是等可能的.用表示“恰被選中”這一事件,則{,}事件由6個基本事件組成,因而.(2)用表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于{},事件有3個基本事件組成,所以,由對立事件的概率公式得.19、(Ⅰ)0.4;(Ⅱ)20.【解析】

(1)首先可以根據(jù)頻率分布直方圖得出樣本中分?jǐn)?shù)不小于的頻率,然后算出樣本中分?jǐn)?shù)小于的頻率,最后計算出分?jǐn)?shù)小于的概率;(2)首先計算出樣本中分?jǐn)?shù)不小于的頻率,然后計算出分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù),最后計算出總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù)?!驹斀狻浚?)根據(jù)頻率分布直方圖可知,樣本中分?jǐn)?shù)不小于的頻率為,所以樣本中分?jǐn)?shù)小于的頻率為.所以從總體的名學(xué)生中隨機(jī)抽取一人,其分?jǐn)?shù)小于的概率估計為。(2)根據(jù)題意,樣本中分?jǐn)?shù)不小于的頻率為,分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù)為,所以總體中分?jǐn)?shù)在區(qū)間內(nèi)的人數(shù)估計為?!军c睛】遇到頻率分布直方圖問題時需要注意:在頻率分布直方圖中,小矩形的高表示頻率/組距,而不是頻率;利用頻率分布直方圖求眾數(shù)、中位數(shù)和平均數(shù)時,應(yīng)注意三點:①最高的小長方形底邊中點的橫坐標(biāo)即是眾數(shù);②中位數(shù)左邊和右邊的小長方形的面積和是相等的;③平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個小長方形的面積乘以小長方形底邊中點的橫坐標(biāo)之和。20、(1)y=c?dx【解析】

(1)根據(jù)散點圖判斷,y=c?dx適宜;(2)y=c?dx,兩邊同時取常用對數(shù)得:【詳解】(1)根據(jù)散點圖判斷,y=c?dx適宜作為掃碼支付的人數(shù)y關(guān)于活動推出天數(shù)(2)∵y=c?dx,兩邊同時取常用對數(shù)得:1gy=1g(c?d設(shè)1gy=v,∴v=1gc+1gd?x∵x=4,v∴l(xiāng)gd=把樣本中心點(4,1.54)代入v=1gc+1gd?x,得:∴v=0.54+0.25x,∴y關(guān)于x的回歸方程式:y=把x=8代入上式,y=3.47×活動推出第8天使用掃碼支付的人次為3470;【點睛】本題考查回歸分析,考查線性回歸直線過樣本中心點,在一組具有相關(guān)關(guān)系的變量的數(shù)據(jù)間,這樣的直線可以畫出許多條,而其中的一條能最好地反映x與Y之間的關(guān)系,這條直線過樣本中心點.線性回歸方程適用于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論