江蘇省大豐市實驗初級中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁
江蘇省大豐市實驗初級中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁
江蘇省大豐市實驗初級中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁
江蘇省大豐市實驗初級中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁
江蘇省大豐市實驗初級中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省大豐市實驗初級中學(xué)2025屆高一下數(shù)學(xué)期末聯(lián)考模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知三棱錐的所有頂點都在球的求面上,是邊長為的正三角形,為球的直徑,且,則此棱錐的體積為()A. B. C. D.2.若函數(shù),又,,且的最小值為,則正數(shù)的值是()A. B. C. D.3.如果數(shù)列的前項和為,則這個數(shù)列的通項公式是()A. B. C. D.4.從1,2,3,…,9這個9個數(shù)中任取5個不同的數(shù),則這5個數(shù)的中位數(shù)是5的概率等于()A.57 B.59 C.25.已知函數(shù),,若成立,則的最小值為()A. B. C. D.6.在中,且,則等于()A. B. C. D.7.《九章算術(shù)》中的玉石問題:“今有玉方一寸,重七兩;石方一寸,重六兩.今有石方三寸,中有玉,并重十一斤(即176兩),問玉、石重各幾何?”其意思為:“寶玉1立方寸重7兩,石料1立方寸重6兩,現(xiàn)有寶石和石料混合在一起的一個正方體,棱長是3寸,質(zhì)量是11斤(即176兩),問這個正方體中的寶玉和石料各多少兩?”如圖所示的程序框圖給出了對此題的一個求解算法,運行該程序框圖,則輸出的分別為()A.90,86 B.98,78 C.94,82 D.102,748.在中,角的對邊分別是,若,則角的大小為()A.或 B.或 C. D.9.直線與直線平行,則()A. B.或 C. D.或10.方程表示的曲線是()A.一個圓 B.兩個圓 C.半個圓 D.兩個半圓二、填空題:本大題共6小題,每小題5分,共30分。11.向量滿足,,則向量的夾角的余弦值為_____.12.在三棱錐中,已知,,則三棱錐內(nèi)切球的表面積為______.13.關(guān)于的方程()的兩虛根為、,且,則實數(shù)的值是________.14.在中,角所對的邊分別為,下列命題正確的是_____________.①總存在某個內(nèi)角,使得;②存在某鈍角,有;③若,則的最小角小于.15.若,則實數(shù)的值為_______.16.我國南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)的三個內(nèi)角A、B、C所對的邊分別為a、b、c,面積為S,則“三斜公式”為.若,,則用“三斜公式”求得的面積為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在△ABC中,AC=6,cosB=,C=.(1)求AB的長;(2)求△ABC的面積.18.直線的方程為.(1)若在兩坐標(biāo)軸上的截距相等,求的值;(2)若不經(jīng)過第二象限,求實數(shù)的取值范圍.19.已知圓的圓心在線段上,圓經(jīng)過點,且與軸相切.(1)求圓的方程;(2)若直線與圓交于,兩點,當(dāng)最小時,求直線的方程及的最小值.20.在中,角的對邊分別為.若.(1)求;(2)求的面積的最大值.21.在中,角對應(yīng)的邊分別是,且.(1)求角;(2)若,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)題意作出圖形:設(shè)球心為O,過ABC三點的小圓的圓心為O1,則OO1⊥平面ABC,延長CO1交球于點D,則SD⊥平面ABC.∵CO1=,∴,∴高SD=2OO1=,∵△ABC是邊長為1的正三角形,∴S△ABC=,∴.考點:棱錐與外接球,體積.【名師點睛】本題考查棱錐與外接球問題,首先我們要熟記一些特殊的幾何體與外接球(內(nèi)切球)的關(guān)系,如正方體(長方體)的外接球(內(nèi)切球)球心是對角線的交點,正棱錐的外接球(內(nèi)切球)球心在棱錐的高上,對一般棱錐來講,外接球球心到名頂點距離相等,當(dāng)問題難以考慮時,可減少點的個數(shù),如先考慮到三個頂點的距離相等的點是三角形的外心,球心一定在過此點與此平面垂直的直線上.如直角三角形斜邊中點到三頂點距離相等等等.2、D【解析】,由,得,,由,得,則,當(dāng)時,取得最小值,則,解得,故選D.3、B【解析】

根據(jù),當(dāng)時,,再結(jié)合時,,可知是以為首項,為公比的等比數(shù)列,從而求出數(shù)列的通項公式.【詳解】由,當(dāng)時,,所以,當(dāng)時,,此時,所以,數(shù)列是以為首項,為公比的等比數(shù)列,即.故選:B.【點睛】本題考查了利用遞推公式求數(shù)列的通項公式,考查了計算能力,屬于基礎(chǔ)題.4、C【解析】試題分析:設(shè)事件為“從1,2,3,…,9這9個數(shù)中5個數(shù)的中位數(shù)是5”,則基本事件總數(shù)為種,事件所包含的基本事件的總數(shù)為:,所以由古典概型的計算公式知,,故應(yīng)選.考點:1.古典概型;5、B【解析】,則,所以,則,易知,,則在單調(diào)遞減,單調(diào)遞增,所以,故選B。點睛:本題考查導(dǎo)數(shù)的綜合應(yīng)用。利用導(dǎo)數(shù)求函數(shù)的極值和最值是導(dǎo)數(shù)綜合應(yīng)用題型中的常見考法。通過求導(dǎo),首先觀察得到導(dǎo)函數(shù)的極值點,利用圖象判斷出單調(diào)增減區(qū)間,得到最值。6、A【解析】

在△ABC中,利用正弦定理與兩角和的正弦化簡已知可得,sin(A+C)=sinB,結(jié)合a>b,即可求得答案.【詳解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故選A.【點睛】本題考查兩角和與差的正弦函數(shù)與正弦定理的應(yīng)用,考查了大角對大邊的性質(zhì),屬于中檔題.7、B【解析】(1);(2);(3);(4),輸出分別為98,78。故選B。8、B【解析】

通過給定條件直接利用正弦定理分析,注意討論多解的情況.【詳解】由正弦定理可得:,,∵,∴為銳角或鈍角,∴或.故選B.【點睛】本題考查解三角形中正弦定理的應(yīng)用,難度較易.出現(xiàn)多解時常借助“大邊對大角,小邊對小角”來進行取舍.9、B【解析】

兩直線平行,斜率相等;按,和三類求解.【詳解】當(dāng)即時,兩直線為,,兩直線不平行,不符合題意;當(dāng)時,兩直線為,兩直線不平行,不符合題意;當(dāng)即時,直線的斜率為,直線的斜率為,因為兩直線平行,所以,解得或,故選B.【點睛】本題考查直線平行的斜率關(guān)系,注意斜率不存在和斜率為零的情況.10、D【解析】原方程即即或故原方程表示兩個半圓.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

通過向量的垂直關(guān)系,結(jié)合向量的數(shù)量積求解向量的夾角的余弦值.【詳解】向量,滿足,,可得:,,向量的夾角為,所以.故答案為.【點睛】本題考查向量的數(shù)量積的應(yīng)用,向量的夾角的余弦函數(shù)值的求法.考查計算能力.屬于基礎(chǔ)題.12、【解析】

先計算出三棱錐的體積,利用等體積法求出三棱錐的內(nèi)切球的半徑,再求出內(nèi)切球的表面積?!驹斀狻咳D中點為E,并連接AE、BE在中,由等腰三角形的性質(zhì)可得,同理則在中點A到邊BE的距離即為點A到平面BCD的距離h,在中,【點睛】本題綜合考查了三棱錐的體積、三棱錐內(nèi)切圓的求法、球的表面積,屬于中檔題.13、5【解析】

關(guān)于方程兩數(shù)根為與,由根與系數(shù)的關(guān)系得:,,由及與互為共軛復(fù)數(shù)可得答案.【詳解】解:與是方程的兩根由根與系數(shù)的關(guān)系得:,,由與為虛數(shù)根得:,,則,解得,經(jīng)驗證,符合要求,故答案為:.【點睛】本題考查根與系數(shù)的關(guān)系的應(yīng)用.求解是要注意與為虛數(shù)根情形,否則漏解,屬于基礎(chǔ)題.14、①③【解析】

①中,根據(jù)直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個角在內(nèi),即可判定;②中,利用兩角和的正切公式,化簡得到,根據(jù)鈍角三角形,即可判定;③中,利用向量的運算,得到,由于不共線,得到,再由余弦定理,即可判定.【詳解】由題意,對于①中,在中,當(dāng),則,若為直角三角形,則必有一個角在內(nèi);若為銳角三角形,則必有一個內(nèi)角小于等于;若為鈍角三角形,也必有一個角小于內(nèi),所以總存在某個內(nèi)角,使得,所以是正確的;對于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【點睛】本題以真假命題為載體,考查了正弦、余弦定理的應(yīng)用,以及向量的運算及應(yīng)用,其中解答中熟練應(yīng)用解三角形的知識和向量的運算進行化簡是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.15、【解析】

由得,代入方程即可求解.【詳解】,.,,,即,故填.【點睛】本題主要考查了反三角函數(shù)的定義及運算性質(zhì),屬于中檔題.16、【解析】

先由,根據(jù)余弦定理,求出,再由,結(jié)合余弦定理,求出,再由題意即可得出結(jié)果.【詳解】因為,所以,因此;又,由余弦定理可得,所以,因此.故答案為【點睛】本題主要考查解三角形,熟記正弦定理與余弦定理即可,屬于常考題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)21【解析】

(1)由,求得,再由正弦定理,即可求解.(2)由(1)和,求得,再由三角形的面積公式,即可求解.【詳解】(1)由題意,因為,且為三角形的內(nèi)角,所以,由正弦定理,可得,即,解得.(2)由(1)和,則,由三角形的面積公式,可得.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時,要抓住題設(shè)條件和利用某個定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.18、(1)0或2;(2).【解析】

(1)當(dāng)過坐標(biāo)原點時,可求得滿足題意;當(dāng)不過坐標(biāo)原點時,可根據(jù)直線截距式,利用截距相等構(gòu)造方程求得結(jié)果;(2)當(dāng)時,可得直線不經(jīng)過第二象限;當(dāng)時,結(jié)合函數(shù)圖象可知斜率為正,且在軸截距小于等于零,從而構(gòu)造不等式組求得結(jié)果.【詳解】(1)當(dāng)過坐標(biāo)原點時,,解得:,滿足題意當(dāng)不過坐標(biāo)原點時,即時若,即時,,不符合題意若,即時,方程可整理為:,解得:綜上所述:或(2)當(dāng),即時,,不經(jīng)過第二象限,滿足題意當(dāng),即時,方程可整理為:,解得:綜上所述:的取值范圍為:【點睛】本題考查直線方程的應(yīng)用,涉及到直線截距式方程、由圖象確定參數(shù)范圍等知識;易錯點是在截距相等時,忽略經(jīng)過坐標(biāo)原點的情況,造成丟根.19、(1)(2)的方程為,最小為【解析】

(1)設(shè)圓的方程為,由題意可得,求解即可得到圓的方程;(2)過定點,當(dāng)直線與直線垂直時,直線被圓截得的弦最小,求解即可.【詳解】解:(1)設(shè)圓的方程為,所以,解得所以圓的方程為.(2)直線的方程可化為點斜式,所以過定點.又點在圓內(nèi),當(dāng)直線與直線垂直時,直線被圓截得的弦最?。驗?,所以的斜率,所以的方程為,即,因為,,所以.【點睛】求圓的弦長的常用方法幾何法:設(shè)圓的半徑為r,弦心距為d,弦長為l,則;②代數(shù)方法:運用韋達定理及弦長公式:==.20、(1)(2)【解析】

(1)用正弦定理將式子化為,進行整理化簡可得的值,即得角B;(2)由余弦定理可得關(guān)于的等式,再利用基本不等式和三角形面積公式可得面積最大值?!驹斀狻浚?)由題得,,,,解得,,.(2),由余弦定理得,,整理得,又,即,則的面積的最大值為.【點睛】本題考查用正弦定理求三角形內(nèi)角,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論