




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省鎮(zhèn)江市重點名校2025屆高一數(shù)學第二學期期末經(jīng)典模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知m,n表示兩條不同直線,表示平面,下列說法正確的是()A.若則 B.若,,則C.若,,則 D.若,,則2.函數(shù)的圖像的一條對稱軸是()A. B. C. D.3.《九章算術》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺.術曰:周自相乘,以高乘之,十二而一”.這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一.”就是說:圓堡瑽(圓柱體)的體積為:V=×(底面的圓周長的平方×高).則由此可推得圓周率的取值為()A.3 B.3.14 C.3.2 D.3.34.設,則下列不等式恒成立的是A. B.C. D.5.在中任取一實數(shù)作為x,則使得不等式成立的概率為()A. B. C. D.6.已知是等差數(shù)列的前項和,.若對恒成立,則正整數(shù)構成的集合是()A. B. C. D.7.設,若關于的不等式在區(qū)間上有解,則()A. B. C. D.8.已知兩條不重合的直線和,兩個不重合的平面和,下列四個說法:①若,,,則;②若,,則;③若,,,,則;④若,,,,則.其中所有正確的序號為()A.②④ B.③④ C.④ D.①③9.對一切,恒成立,則實數(shù)的取值范圍是()A. B.C. D.10.已知向量,且,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,內(nèi)角的對邊分別為,若的周長為,面積為,,則__________.12.已知向量、滿足:,,,則_________.13.已知,,若,則______14.在中,角所對的邊分別為,,則____15.若無窮數(shù)列的所有項都是正數(shù),且滿足,則______.16.已知函數(shù)的圖象關于點對稱,記在區(qū)間的最大值為,且在()上單調遞增,則實數(shù)的最小值是__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在△ABC中,角A,B,C所對的邊分別是a,b,c,a=7,b=8,.(1)求邊AB的長;(2)求△ABC的面積.18.已知數(shù)列的前n項和為,且.(1)求數(shù)列的通項公式;(2)若,設數(shù)列的前n項和為,證明.19.已知數(shù)列滿足且,設,.(1)求;(2)求的通項公式;(3)求.20.計算:(1)(2)(3)21.近期,某公交公司分別推出支付寶和徽信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表l所示:表1根據(jù)以上數(shù)據(jù),繪制了如右圖所示的散點圖.(1)根據(jù)散點圖判斷,在推廣期內(nèi),y=a+bx與(2)根據(jù)(1)的判斷結果及表1中的數(shù)據(jù),求y關于x的回歸方程,并預測活動推出第8天使用掃碼支付的人次;參考數(shù)據(jù):其中υ參考公式:對于一組數(shù)據(jù)u1,υ1,
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:線面垂直,則有該直線和平面內(nèi)所有的直線都垂直,故B正確.考點:空間點線面位置關系.2、C【解析】對稱軸穿過曲線的最高點或最低點,把代入后得到,因而對稱軸為,選.3、A【解析】試題分析:由題意知圓柱體積×(底面的圓周長的平方×高),化簡得:,故選A.考點:圓柱的體積公式.4、C【解析】
利用不等式的性質,合理推理,即可求解,得到答案.【詳解】因為,所以,所以A項不正確;因為,所以,,則,所以B不正確;因為,則,所以,又因為,則,所以等號不成立,所以C正確;由,所以,所以D錯誤.【點睛】本題主要考查了不等式的性質的應用,其中解答中熟記不等式的性質,合理運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5、C【解析】
先求解不等式,再利用長度型的幾何概型概率公式求解即可【詳解】由題,因為,解得,則,故選:C【點睛】本題考查長度型的幾何概型,考查解對數(shù)不等式6、A【解析】
先分析出,即得k的值.【詳解】因為因為所以.所以,所以正整數(shù)構成的集合是.故選A【點睛】本題主要考查等差數(shù)列前n項和的最小值的求法,意在考查學生對該知識的理解掌握水平和分析推理能力.7、D【解析】
根據(jù)題意得不等式對應的二次函數(shù)開口向上,分別討論三種情況即可.【詳解】由題意得:當當當綜上所述:,選D.【點睛】本題主要考查了含參一元二次不等式中參數(shù)的取值范圍.解這類題通常分三種情況:.有時還需要結合韋達定理進行解決.8、C【解析】
根據(jù)線面平行,面面平行,線面垂直,面面垂直的性質定理,判定定理等有關結論,逐項判斷出各項的真假,即可求出.【詳解】對①,若,,,則或和相交,所以①錯誤;對②,若,,則或,所以②錯誤;對③,根據(jù)面面平行的判定定理可知,只有,,,,且和相交,則,所以③錯誤;對④,根據(jù)面面垂直的性質定理可知,④正確.故選:C.【點睛】本題主要考查有關線面平行,面面平行,線面垂直,面面垂直的命題的判斷,意在考查線面平行,面面平行,線面垂直,面面垂直的性質定理,判定定理等有關結論的理解和應用,屬于基礎題.9、B【解析】
先求得的取值范圍,根據(jù)恒成立問題的求解策略,將原不等式轉化為,再解一元二次不等式求得的取值范圍.【詳解】解:對一切,恒成立,轉化為:的最大值,又知,的最大值為;所以,解得或.故選B.【點睛】本小題主要考查恒成立問題的求解策略,考查三角函數(shù)求最值的方法,考查一元二次不等式的解法,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.10、B【解析】
由向量平行可構造方程求得結果.【詳解】,解得:故選:【點睛】本題考查根據(jù)向量平行求解參數(shù)值的問題,關鍵是明確兩向量平行可得.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】
分析:由題可知,中已知,面積公式選用,得,又利用余弦定理,即可求出的值.詳解:,,由余弦定理,得又,,解得.故答案為3.點睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結合已知條件靈活轉化邊和角之間的關系,從而達到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標出來,然后確定轉化的方向;第二步:定工具,即根據(jù)條件和所求合理選擇轉化的工具,實施邊角之間的互化;第三步:求結果.12、.【解析】
將等式兩邊平方得出的值,再利用結合平面向量的數(shù)量積運算律可得出結果.【詳解】,,,因此,,故答案為.【點睛】本題考查利用平面向量數(shù)量積來計算平面向量的模,在計算時,一般將平面向量的模平方,利用平面向量數(shù)量積的運算律來進行計算,考查運算求解能力,屬于中等題.13、【解析】
根據(jù)向量垂直的坐標表示列出等式,求出,再利用二倍角公式、平方關系即可求出.【詳解】由得,,解得,.【點睛】本題主要考查了向量垂直的坐標表示以及二倍角公式、平方關系的應用.14、【解析】
利用正弦定理將邊角關系式中的邊都化成角,再結合兩角和差公式進行整理,從而得到.【詳解】由正弦定理可得:即:本題正確結果:【點睛】本題考查李用正弦定理進行邊角關系式的化簡問題,屬于常規(guī)題.15、【解析】
先由作差法求出數(shù)列的通項公式為,即可計算出,然后利用常用數(shù)列的極限即可計算出的值.【詳解】當時,,可得;當時,由,可得,上式下式得,得,也適合,則,.所以,.因此,.故答案為:.【點睛】本題考查利用作差法求數(shù)列通項,同時也考查了數(shù)列極限的計算,考查計算能力,屬于中等題.16、【解析】,所以,又,得,所以,且求得,又,得單調遞增區(qū)間為,由題意,當時,。點睛:本題考查三角函數(shù)的化簡及性質應用。本題首先考查三角函數(shù)的輔助角公式應用,并結合對稱中心的性質,得到函數(shù)解析式。然后考察三角函數(shù)的單調性,利用整體思想求出單調區(qū)間,求得答案。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)AB的長為1.(2)6.【解析】
(1)利用余弦定理解方程,解方程求得的長.(2)根據(jù)的值,求得的值,由三角形面積公式,求得三角形的面積.【詳解】(1)∵a=7,b=8,.∴由余弦定理b2=a2+c2﹣2accosB,可得:64=49+c2﹣2,可得:c2+2c﹣15=0,∴解得:c=1,或﹣5(舍去),可得:AB的長為1.(2)∵,B∈(0,π),∴sinB,又a=7,c=1,∴S△ABCacsinB6.【點睛】本小題主要考查余弦定理解三角形,考查三角形的面積公式,考查同角三角函數(shù)的基本關系式,考查運算求解能力,屬于基礎題.18、(1);(2)見解析.【解析】【試題分析】(1)借助題設中的數(shù)列遞推式探求數(shù)列通項之間的關系,再運用等比數(shù)列的定義求得通項公式;(2)依據(jù)(1)的結論運用錯位相減法求解,再借助簡單縮放法推證:(1)當時,得,當時,得,所以,(2)由(1)得:,又①得②兩式相減得:,故,所以.點睛:解答本題的思路是充分借助題設條件,先探求數(shù)列的的通項公式,再運用錯位相減法求解前項和.解答第一問時,先借助題設中的數(shù)列遞推式探求數(shù)列通項之間的關系,再運用等比數(shù)列的定義求得通項公式;解答第二問時,先依據(jù)(1)中的結論求得,運用錯位相減求和法求得,使得問題獲解.19、(1),,,;(1),;(3).【解析】
(1)依次代入計算,可求得;(1)歸納出,并用數(shù)學歸納法證明;(3)用裂項相消法求和,然后求極限.【詳解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)歸納:,下面用數(shù)學歸納法證明:1°n=1,n=1時,由(1)知成立,1°假設n=k(k>1)時,結論成立,即bk=1k1,則n=k+1時,ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1時結論成立,∴對所有正整數(shù)n,bn=1n1.(3)由(1)知n1時,,∴,.【點睛】本題考查用歸納法求數(shù)列的通項公式,考查用裂項相消法求數(shù)列的和,考查數(shù)列的極限.在求數(shù)列通項公式時,可以根據(jù)已知的遞推關系求出數(shù)列的前幾項,然后歸納出通項公式,并用數(shù)學歸納法證明,這對學生的歸納推理能力有一定的要求,這也就是我們平常所學的從特殊到一般的推理方法.20、(1);(2);(3).【解析】
利用誘導公式,對每一道題目進行化簡求值.【詳解】(1)原式.(2)原式.(3)原式.【點睛】在使用誘導公式時,注意“奇變偶不變,符號看象限”法則的應用,即輔助角為的奇數(shù)倍,函數(shù)名要改變;若為的偶數(shù)倍,函數(shù)名不改變.21、(1)y=c?dx【解析】
(1)根據(jù)散點圖判斷,y=c?dx適宜;(2)y=c?dx,兩邊同時取常用對數(shù)得:【詳解】(1)根據(jù)散點圖判斷,y=c?dx適宜作為掃碼支付的人數(shù)y關于活動推出天數(shù)(2)∵y=c?dx,兩邊同時取常用對數(shù)得:1gy=1g(c?d設1gy=v,∴v=1gc+1gd?x∵x=4,v∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 施工項目管理中的協(xié)調措施
- 廣告素材版權轉讓協(xié)議
- 四年級班主任語言藝術教學計劃
- 2025年小學學生心理評估計劃
- 養(yǎng)老院醫(yī)療廢物處理職責與規(guī)范
- 股權質押合同變更通知書
- 六年級分數(shù)乘法的數(shù)學競賽題型分析范文
- 特殊人群客運服務協(xié)議
- 管材供貨協(xié)議范本
- 批發(fā)苗木供應協(xié)議
- 2024公安機關人民警察高級執(zhí)法資格考試題(解析版)
- 醫(yī)院抗菌藥物臨時采購使用申請表
- 高考英語核心詞匯1000個
- 校園海綿城市設計方案
- 3-6-多學科設計優(yōu)化
- GB/T 4706.66-2024家用和類似用途電器的安全第66部分:泵的特殊要求
- GB/T 4706.1-2024家用和類似用途電器的安全第1部分:通用要求
- 2022年6月英語四級真題 第一套
- 《事故汽車常用零部件修復與更換判別規(guī)范》
- 2023-2024學年河南省安陽市殷都區(qū)八年級(下)期末數(shù)學試卷(含答案)
- 國家糧食和物資儲備局湖北局三三八處招聘筆試參考題庫含答案解析2024
評論
0/150
提交評論