版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
最新2011年考研數(shù)學(xué)大綱內(nèi)容-數(shù)一最新2011年考研數(shù)學(xué)大綱內(nèi)容_數(shù)一考試科目:高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計試卷結(jié)構(gòu)一、試卷滿分及答題時間試卷滿分為150分,考試時間為180分鐘二、內(nèi)容比例高等數(shù)學(xué) 約56%線性代數(shù) 約22%概率論與數(shù)理統(tǒng)計 約22%三、題型結(jié)構(gòu)單項(xiàng)選擇題 8小題,每小題4分,共32分填空題 6小題,每小題4分,共24分解答題(包括證明題) 9小題,共94分試卷結(jié)構(gòu)的變化2011年大綱與2010年大綱比較1.內(nèi)容比例無變化2.題型結(jié)構(gòu)無變化高等數(shù)學(xué)一、函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限與右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極限的四則運(yùn)算極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個重要極限:函數(shù)連續(xù)的概念函數(shù)間斷點(diǎn)的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)考試要求1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系.2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.5.理解極限的概念,理解函數(shù)左極限與右三、一元函數(shù)積分學(xué)考試內(nèi)容原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)及其導(dǎo)數(shù)牛頓一萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分反常(廣義)積分定積分的應(yīng)用考試要求1.理解原函數(shù)的概念,理解不定積分和定積分的概念.2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分.4.理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式.5.了解反常積分的概念,會計算反常積分.6.掌握用定積分表達(dá)和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值.本章考查焦點(diǎn)1.用積分表達(dá)、計算幾何量和物理量2.積分上限的函數(shù)的導(dǎo)數(shù)3.積分中值定理4.積分的計算四、向量代數(shù)和空間解析幾何考試內(nèi)容向量的概念向量的線性運(yùn)算向量的數(shù)量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標(biāo)表達(dá)式及其運(yùn)算單位向量方向數(shù)與方向余弦曲面方程和空間曲線方程的概念平面方程、直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點(diǎn)到平面和點(diǎn)到直線的距離球面柱面旋轉(zhuǎn)曲面常用的二次曲面方程及其圖形空間曲線的參數(shù)方程和一般方程空間曲線在坐標(biāo)面上的投影曲線方程考試要求1.理解空間直角坐標(biāo)系,理解向量的概念及其表示.2.掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積、混合積),了解兩個向量垂直、平行的條件.3.理解單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式,掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算的方法.4.掌握平面方程和直線方程及其求法.5.會求平面與平面、平面與直線、直線與直線之間的夾角,并會利用平面、直線的相互關(guān)系(平行、垂直、相交等)解決有關(guān)問題.6.會求點(diǎn)到直線以及點(diǎn)到平面的距離.7.了解曲面方程和空間曲線方程的概念.8.了解常用二次曲面的方程及其圖形,會求簡單的柱面和旋轉(zhuǎn)曲面的方程.9.了解空間曲線的參數(shù)方程和一般方程.了解空間曲線在坐標(biāo)平面上的投影,并會求該投影曲線的方程.本章考查焦點(diǎn)1.點(diǎn)到直線、平面的距離2.曲面的方程五、多元函數(shù)微分學(xué)考試內(nèi)容多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì)多元函數(shù)的偏導(dǎo)數(shù)和全微分全微分存在的必要條件和充分條件多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法二階偏導(dǎo)數(shù)方向?qū)?shù)和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數(shù)的二階泰勒公式多元函數(shù)的極值和條件極值多元函數(shù)的最大值、最小值及其簡單應(yīng)用考試要求1.理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義.2.了解二元函數(shù)的極限與連續(xù)的概念以及有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì).3.理解多元函數(shù)偏導(dǎo)數(shù)和全微分的概念,會求全微分,了解全微分存在的必要條件和充分條件,了解全微分形式的不變性.4.理解方向?qū)?shù)與梯度的概念,并掌握其計算方法.5.掌握多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法.6.了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù).7.了解空間曲線的切線和法平面及曲面的切平面和法線的概念,會求它們的方程.8.了解二元函數(shù)的二階泰勒公式.9.理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應(yīng)用問題.本章考查焦點(diǎn)1.多元復(fù)合函數(shù)的一階、二階偏導(dǎo)數(shù)2.某些簡單應(yīng)用的最大值和最小值六、多元函數(shù)積分學(xué)考試內(nèi)容二重積分與三重積分的概念、性質(zhì)、計算和應(yīng)用兩類曲線積分的概念、性質(zhì)及計算兩類曲線積分的關(guān)系格林(Green)公式平面曲線積分與路徑無關(guān)的條件二元函數(shù)全微分的原函數(shù)兩類曲面積分的概念、性質(zhì)及計算兩類曲面積分的關(guān)系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應(yīng)用考試要求1.理解二重積分、三重積分的概念,了解重積分的性質(zhì),了解二重積分的中值定理.2.掌握二重積分的計算方法(直角坐標(biāo)、極坐標(biāo)),會計算三重積分(直角坐標(biāo)、柱面坐標(biāo)、球面坐標(biāo)).3.理解兩類曲線積分的概念,了解兩類曲線積分的性質(zhì)及兩類曲線積分的關(guān)系.4.掌握計算兩類曲線積分的方法.5.掌握格林公式并會運(yùn)用平面曲線積分與路徑無關(guān)的條件,會求二元函數(shù)全微分的原函數(shù).6.了解兩類曲面積分的概念、性質(zhì)及兩類曲面積分的關(guān)系,掌握計算兩類曲面積分的方法,掌握用高斯公式計算曲面積分的方法,并會用斯托克斯公式計算曲線積分.7.了解散度與旋度的概念,并會計算.8.會用重積分、曲線積分及曲面積分求一些幾何量與物理量(平面圖形的面積、體積、曲面面積、弧長、質(zhì)量、質(zhì)心、、形心、轉(zhuǎn)動慣量、引力、功及流量等).本章考查焦點(diǎn)1.曲面積分的計算2.二元函數(shù)全微分的原函數(shù)的計算3.重積分、三重積分的計算七、無窮級數(shù)考試內(nèi)容常數(shù)項(xiàng)級數(shù)的收斂與發(fā)散的概念收斂級數(shù)的和的概念級數(shù)的基本性質(zhì)與收斂的必要條件幾何級數(shù)與級數(shù)及其收斂性正項(xiàng)級數(shù)收斂性的判別法交錯級數(shù)與萊布尼茨定理任意項(xiàng)級數(shù)的絕對收斂與條件收斂函數(shù)項(xiàng)級數(shù)的收斂域與和函數(shù)的概念冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域冪級數(shù)的和函數(shù)冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)簡單冪級數(shù)的和函數(shù)的求法初等函數(shù)的冪級數(shù)展開式函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù)狄利克雷(Dirichlet)定理函數(shù)在上的傅里葉級數(shù)函數(shù)在上的正弦級數(shù)和余弦級數(shù)考試要求1.理解常數(shù)項(xiàng)級數(shù)收斂、發(fā)散以及收斂級數(shù)的和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件.2.掌握幾何級數(shù)與級數(shù)的收斂與發(fā)散的條件.3.掌握正項(xiàng)級數(shù)收斂性的比較判別法和比值判別法,會用根值判別法.4.掌握交錯級數(shù)的萊布尼茨判別法.5.了解任意項(xiàng)級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系.6.了解函數(shù)項(xiàng)級數(shù)的收斂域及和函數(shù)的概念.7.理解冪級數(shù)收斂半徑的概念、并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法.8.了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會求一些冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并會由此求出某些數(shù)項(xiàng)級數(shù)的和.9.了解函數(shù)展開為泰勒級數(shù)的充分必要條件.10.掌握、、、及的麥克勞林(Maclaurin)展開式,會用它們將一些簡單函數(shù)間接展開成冪級數(shù).11.了解傅里葉級數(shù)的概念和狄利克雷收斂定理,會將定義在上的函數(shù)展開為傅里葉級數(shù),會將定義在上的函數(shù)展開為正弦級數(shù)與余弦級數(shù),會寫出傅里葉級數(shù)的和函數(shù)的表達(dá)式.本章考查焦點(diǎn)1.函數(shù)的冪級數(shù)展開2.冪級數(shù)的和函數(shù)八、常微分方程考試內(nèi)容常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變量代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡單的二階常系數(shù)非齊次線性微分方程歐拉(Euler)方程微分方程的簡單應(yīng)用考試要求1.了解微分方程及其階、解、通解、初始條件和特解等概念.2.掌握變量可分離的微分方程及一階線性微分方程的解法.3.會解齊次微分方程、伯努利方程和全微分方程,會用簡單的變量代換解某些微分方程4.會用降階法解下列形式的微分方程:.5.理解線性微分方程解的性質(zhì)及解的結(jié)構(gòu).6.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程.7.會解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程.8.會解歐拉方程.9.會用微分方程解決一些簡單的應(yīng)用問題.本章考查焦點(diǎn)1.常微分方程的解法及簡單應(yīng)用線性代數(shù)一、行列式考試內(nèi)容行列式的概念和基本性質(zhì)行列式按行(列)展開定理考試要求1.了解行列式的概念,掌握行列式的性質(zhì).2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式.本章考查焦點(diǎn)很少直接考查行列式,總是蘊(yùn)含在矩陣的有關(guān)問題中.二、矩陣考試內(nèi)容矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運(yùn)算考試要求1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣,以及它們的性質(zhì).2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì),以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.4.理解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.5.了解分塊矩陣及其運(yùn)算.本章考查焦點(diǎn)1.矩陣的逆矩陣的計算及其秩的計算方法.三、向量考試內(nèi)容向量的概念向量的線性組合與線性表示向量組的線性相關(guān)與線性無關(guān)向量組的極大線性無關(guān)組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系向量空間及其相關(guān)概念維向量空間的基變換和坐標(biāo)變換過渡矩陣向量的內(nèi)積線性無關(guān)向量組的正交規(guī)范化方法規(guī)范正交基正交矩陣及其性質(zhì)考試要求1.理解維向量、向量的線性組合與線性表示的概念.2.理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法.3.理解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系.5.了解維向量空間、子空間、基底、維數(shù)、坐標(biāo)等概念.6.了解基變換和坐標(biāo)變換公式,會求過渡矩陣.7.了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法.8.了解規(guī)范正交基、正交矩陣的概念以及它們的性質(zhì).本章考查焦點(diǎn)1.向量的線性相關(guān)及正交規(guī)范化.四、線性方程組考試內(nèi)容:線性方程組的克萊姆(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質(zhì)和解的結(jié)構(gòu)齊次線性方程組的基礎(chǔ)解系和通解解空間非齊次線性方程組的通解考試要求l.會用克萊姆法則.2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.3.理解齊次線性方程組的基礎(chǔ)解系、通解及解空間的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念.5.掌握用初等行變換求解線性方程組的方法.本章考查焦點(diǎn)1.齊次線性方程組的基礎(chǔ)解系和通解的計算.2非齊次線性方程組解的結(jié)構(gòu)的應(yīng)用.五、矩陣的特征值和特征向量考試內(nèi)容:矩陣的特征值和特征向量的概念、性質(zhì)相似變換、相似矩陣的概念及性質(zhì)矩陣可相似對角化的充分必要條件及相似對角矩陣實(shí)對稱矩陣的特征值、特征向量及其相似對角矩陣考試要求:1.理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣的特征值和特征向量.2.理解相似矩陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.3.掌握實(shí)對稱矩陣的特征值和特征向量的性質(zhì).本章考查焦點(diǎn)1.矩陣特征值和特征向量的計算.2.將矩陣相似對角化.六、二次型考試內(nèi)容二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標(biāo)準(zhǔn)形和規(guī)范形用正交變換和配方法化二次型為標(biāo)準(zhǔn)形二次型及其矩陣的正定性考試要求1.掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換與合同矩陣的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形的概念以及慣性定理.2.掌握用正交變換化二次型為標(biāo)準(zhǔn)形的方法,會用配方法化二次型為標(biāo)準(zhǔn)形.3.理解正定二次型、正定矩陣的概念,并掌握其判別法.本章考查焦點(diǎn)1.將二次型化為標(biāo)準(zhǔn)型概率論與數(shù)理統(tǒng)計一、隨機(jī)事件和概率考試內(nèi)容隨機(jī)事件與樣本空間事件的關(guān)系與運(yùn)算完備事件組概率的概念概率的基本性質(zhì)古典型概率幾何型概率條件概率概率的基本公式事件的獨(dú)立性獨(dú)立重復(fù)試驗(yàn)考試要求1.了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算.2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式,以及貝葉斯(Bayes)公式.3.理解事件獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計算有關(guān)事件概率的方法.本章考查焦點(diǎn)1.全概率公式及貝葉斯公式2.概率及條件概率,古典型概率3.概率的基本公式二、隨機(jī)變量及其分布考試內(nèi)容隨機(jī)變量隨機(jī)變量分布函數(shù)的概念及其性質(zhì)離散型隨機(jī)變量的概率分布連續(xù)型隨機(jī)變量的概率密度常見隨機(jī)變量的分布隨機(jī)變量函數(shù)的分布考試要求1.理解隨機(jī)變量的概念,理解分布函數(shù)的概念及性質(zhì),會計算與隨機(jī)變量相聯(lián)系的事件的概率.2.理解離散型隨機(jī)變量及其概率分布的概念,掌握0-1分布、二項(xiàng)分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用.3.了解泊松定理的結(jié)論和應(yīng)用條件,會用泊松分布近似表示二項(xiàng)分布.4.理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為的指數(shù)分布的概率密度為5.會求隨機(jī)變量函數(shù)的分布.本章考查焦點(diǎn)掌握隨機(jī)變量分布函數(shù)的性質(zhì),尤其是正態(tài)分布.三、多維隨機(jī)變量及其分布考試內(nèi)容多維隨機(jī)變量及其分布二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度隨機(jī)變量的獨(dú)立性和不相關(guān)性常用二維隨機(jī)變量的分布兩個及兩個以上隨機(jī)變量簡單函數(shù)的分布考試要求1.理解多維隨機(jī)變量的概念,理解多維隨機(jī)變量的分布的概念和性質(zhì).理解二維離散型隨機(jī)變量的概率分布、邊緣分布和條件分布,理解二維連續(xù)型隨機(jī)變量的概率密度、邊緣密度和條件密度,會求與二維隨機(jī)變量相關(guān)事件的概率.2.理解隨機(jī)變量的獨(dú)立性及不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件.3.掌握二維均勻分布,了解二維正態(tài)分布的概率密度,理解其中參數(shù)的概率意義.4.會求兩個隨機(jī)變量簡單函數(shù)的分布,會求多個相互獨(dú)立隨機(jī)變量簡單函數(shù)的分布.本章考查焦點(diǎn)1.多維隨機(jī)變量的聯(lián)合分布,邊緣密度及條件密度的計算.四、隨機(jī)變量的數(shù)字特征考試內(nèi)容 隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì)隨機(jī)變量函數(shù)的數(shù)學(xué)期望矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì)考試要求 1.理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征2.會求隨機(jī)變量函數(shù)的數(shù)學(xué)期望.本章考查焦點(diǎn)1.隨機(jī)變量的數(shù)學(xué)期望、方差的計算.五、大數(shù)定律和中心極限定理考試內(nèi)容切比雪夫(Chebyshev)不等式切比雪夫大數(shù)定律伯努利(Bernoulli)大數(shù)定律辛欽(Khinchine)大數(shù)定律棣莫弗-拉普拉斯(DeMoivre-laplace)定理列維-林德伯格(Levy-Lindberg)定理考試要求1.了解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年體育場館建設(shè)質(zhì)保合同2篇
- 2024年新型環(huán)保建材研發(fā)與生產(chǎn)合作合同
- 2024版企業(yè)高管勞動合同及培訓(xùn)服務(wù)合同整合版3篇
- 2024年度企業(yè)風(fēng)險評估與合規(guī)咨詢合同2篇
- 2024年度互聯(lián)網(wǎng)平臺軟件授權(quán)與運(yùn)營服務(wù)合同3篇
- 2024年新能源項(xiàng)目設(shè)備采購合同樣本范文2篇
- 2024年度種羊養(yǎng)殖環(huán)境保護(hù)與減排合同3篇
- 2024年事業(yè)單位項(xiàng)目聘用合同范本下載3篇
- 2024年標(biāo)準(zhǔn)版融資租賃委托合同模板版B版
- 2024年度塔吊技術(shù)培訓(xùn)合同2篇
- 2024年度國家公務(wù)員考試公共基礎(chǔ)知識復(fù)習(xí)試卷及答案(共四套)
- 中國高血壓防治指南(2024年修訂版)解讀-治療篇
- 內(nèi)審檢查表完整版本
- 2024年秋季國家開放大學(xué)《形勢與政策》大作業(yè)及答案
- 上海市復(fù)旦附中2025屆高一上數(shù)學(xué)期末檢測模擬試題含解析
- 義務(wù)教育勞動課程標(biāo)準(zhǔn)2022年版考試題庫及答案5
- 《社會調(diào)查研究與方法》形成性考核冊及參考答案
- 腫瘤所治療所致血小板減少癥診療指南
- 中考英語詞匯
- 《Java程序設(shè)計基礎(chǔ)與應(yīng)用》全套教學(xué)課件
- 2024年山東省濟(jì)南市地理高一上學(xué)期試卷及解答
評論
0/150
提交評論