![北美精算師協會SOA-研究分享:2022-2023年頂尖精算技術_第1頁](http://file4.renrendoc.com/view5/M01/11/1E/wKhkGGZe7CuALILEAAJ-BEu1K-Q305.jpg)
![北美精算師協會SOA-研究分享:2022-2023年頂尖精算技術_第2頁](http://file4.renrendoc.com/view5/M01/11/1E/wKhkGGZe7CuALILEAAJ-BEu1K-Q3052.jpg)
![北美精算師協會SOA-研究分享:2022-2023年頂尖精算技術_第3頁](http://file4.renrendoc.com/view5/M01/11/1E/wKhkGGZe7CuALILEAAJ-BEu1K-Q3053.jpg)
![北美精算師協會SOA-研究分享:2022-2023年頂尖精算技術_第4頁](http://file4.renrendoc.com/view5/M01/11/1E/wKhkGGZe7CuALILEAAJ-BEu1K-Q3054.jpg)
![北美精算師協會SOA-研究分享:2022-2023年頂尖精算技術_第5頁](http://file4.renrendoc.com/view5/M01/11/1E/wKhkGGZe7CuALILEAAJ-BEu1K-Q3055.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
TopActuarialTechnologiesof2022-2023
September|2023
2
Copyright?2023SocietyofActuariesResearchInstitute
TopActuarialTechnologiesof2022-2023
AUTHORSMariannePurushotham,FSA,MAAA
DararithLy,MBA
SPONSORActuarialInnovationandTechnology
StrategicResearchProgramSteering
Committee
CaveatandDisclaimer
TheopinionsexpressedandconclusionsreachedbytheauthorsaretheirownanddonotrepresentanyofficialpositionoropinionoftheSocietyof
ActuariesResearchInstitute,theSocietyofActuariesoritsmembers.TheSocietyofActuariesResearchInstitutemakesnorepresentationorwarrantytotheaccuracyoftheinformation.
Copyright?2023bytheSocietyofActuariesResearchInstitute.Allrightsreserved.
3
Copyright?2023SocietyofActuariesResearchInstitute
CONTENTS
KeyFindings 4
Methodology 6
Section1:TopActuarialTechnologies 8
1.1DataVisualization 8
1.2CloudComputingandStorage 9
1.3PredictiveModeling 10
Section2:NewDataSources 12
Section3:EmergingTechnologies 13
3.1ArtificialIntelligence/MachineLearning 13
3.2Chatbots 13
3.3UnstructuredData 14
Section4:ActuarialCapabilities 15
Section5:ThePathForward 16
Section6:Acknowledgments 17
AppendixA:InterviewGuide 18
AppendixB:SurveyQuestionnaire 19
AboutTheSocietyofActuariesResearchInstitute 29
4
Copyright?2023SocietyofActuariesResearchInstitute
TopActuarialTechnologiesof2022-2023
Overthepastdecade,theemergenceandapplicationofnewtechnologiesandthegrowthofdatasciencehave
presentedbothchallengesandopportunitiesforactuariesandtheroleoftheprofession.Inordertokeepactuariesinformedaboutnewtechnologiesandtheirimpactonthefuturedirectionoftheindustryandtheprofession,theSOAcommissionedLIMRAtoconductaresearchstudyontheTopActuarialTechnologiesof2019toexaminetopactuarialtechnologiescurrentlyinuse,aswellasthoseexpectedtogrowinthefuture.
Thisreportrepresentsthesecondinstallmentoftheongoingseries.TopActuarialTechnologiesof2022-2023providesupdatesonthecurrentandplannedusesofvarioustechnologytypesandtools,highlightsthose
technologiesexpectedtogrowthefastestamongactuariesinthenext12months,andassessesthestatusofadoptionversusexpectationsfrom2019.
KeyFindings
PrimaryActuarialTechnologies
.Thethreemaintechnologiesusedbysurveyrespondentsintheiractuarialworkduring2022-23aredata
visualization,predictivemodeling,andcloudcomputing/storage.Thiswasalsothecaseforthe2019studyoftopactuarialtechnologies.
.Othertechnologieslessoftencitedasusedincurrentactuarialworkincludeblockchain/distributedledgertechnology,versioncontrol/sharedcodingplatforms,androboticprocessautomation.
.Therearealsoemergingtechnologiesthatactuariesexpecttoleverageintheirworkbeyond2023.ThosemostcommonlyidentifiedincludeArtificialIntelligence,MachineLearning,ChatBots,andUnstructuredData.
FrequencyofUse
.Althoughthetopthreetechnologiesinusefor2022-23arethesameasthosecitedin2019,significant
increasesinthefrequencyofuseforthethreemainactuarialtechnologieshaveoccurred.Thepercentageofsurveyrespondentsfrequentlyusingdatavisualization,predictivemodeling,andcloudcomputingtechnologieshasgrownsignificantlysince2019-from42%to60%(datavisualization),16%to40%(predictivemodeling),
and31%to60%(cloudstorageandcomputing).
.Datavisualizationisnotonlythefastestgrowingtechnologyamongactuaries;itisalsousedbymoreactuariescomparedtoothertechnologiesinthesurvey.Intermsofexpectationsregardinggrowthinthetechnologiesusedbeyond2023,actuariesexpecttoseecontinualincreasesintheusageofthethreemaintechnologies,
withnoonesurveyedexpectingtoseeadecrease.
.Factorsdrivingtheincreaseduseofthesetechnologiesincludebothaccountingandregulatorychanges,new
approachestoexperienceanalysisofmortality,morbidity,andbehaviorfactors,andthedrivetowardfasterandmoreeffectiveriskselectiontechniques.
.Dataanalyticsexpertsinterviewedaspartofthisprojectareoptimisticthatactuariesarecapableoflearningnewskills,adapting,andeffectivelyusingnewtechnologiesintheirwork.
5
Copyright?2023SocietyofActuariesResearchInstitute
SoftwareandTools
.PredictivemodelingtoolsmostoftencitedbysurveyedactuariesincludeExcel,R,Python,andSAS.
.DatavisualizationtoolswiththegreatestuseamongsurveyrespondentsincludeMicrosoftOfficeTools(Excel,PowerPoint,Access)(88%ofrespondents),PowerBI(65%ofrespondents)andTableau(47%respondents).
.CloudcomputingandstoragevendorsmostoftencitedbyactuariesincludeMicrosoftAzureCloud(32%)andAmazonWebServices(AWS)(23%).
6
Copyright?2023SocietyofActuariesResearchInstitute
Methodology
Inordertogatherabroadsourceofopinionandinsightregardingnewertechnologiesandtheirapplicationsinactuarialwork,thestudyconsistedofbothqualitativeinterviewsandaquantitativesurvey.AlldatacollectionoccurredbetweenOctober2022andApril2023.
QUALITATIVEINTERVIEWS
Researchersconducted30-minuteinterviewswith18individualswhowereselectedbasedontheirlevelof
involvementwithdataanalyticsandactuarialtechnologyapplicationsfortheirorganization.Ofthe18individuals,14hadalifeandannuityfocus,threehadahealthinsurancefocus,andoneworkedinproperty/casualtyinsurance.Theinterviewquestionsfocusedonthefollowingareas:
.Whattechnologiesareactuariesfrequentlyusingintheircurrentwork?
.Whatdotheyexpecttobeusinginthenext12months?
.Whattechnologiesorareasoftechnologydotheyseeincreasinginthefuture(3-5yearsandbeyond)?
.Howreadyistheactuarialprofessiontousenewtechnologyeffectively?
AninterviewguidewasprovidedtointervieweesinadvanceofthediscussionsandacopyoftheguidecanbefoundinappendixAofthisreport.
QUANTITATIVESURVEY
Followingthe18qualitativeinterviews,ashortquantitativesurveywasdeveloped.Surveyinvitationsweresenttoatargetedsampleofactuariesinthelife,health,retirement,andproperty&casualtyfields,withlineofsightinto
technology,pricing/reserving,andotherfunctions.Thegoalherewastobetterunderstandbroadactuarialprofessionviewsoncurrentandplannedusageofspecifictoolsinvarioustechnologyareas.Thesurveywascompletedby180actuaries.
Basedondiscussionswithinterviewees,thetopactuarialtechnologiesin2022-23werefocusedonthefollowinggeneralareas:
.Datavisualizationisthegraphicalrepresentationofinformationanddatausing
visualelements,suchas
chartsandgraphs,
toprovideameansofidentifyingtrends,outliers,andpatternsindata.
.Predictivemodelingisacommonlyusedsetofstatisticaltechniquestofacilitatethepredictionoffutureoutcomesusinghistoricaldata.
.Cloudstorageisanoffsite,onlinedatastorageandsharingmedium.
.Cloudcomputingisthedeliveryofcomputingservicessuchassoftwareandanalyticstoolsviatheinternet(“thecloud”).Cloudcomputingcanprovidefastercomputingspeedsandeconomiesofscale.
Thesurveyfocusedontheseareas,collectinggreaterdetailregardingspecifictechnicaltoolsusedineachcategory,andthefrequencyofuseofthesetoolsbyactuaries.
Amongthe180surveyrespondents,therewereasmallnumberofinstanceswheremultipleactuariesfromthesamecompanycompletedaresponse.Giventhesmallnumberofinstances,adecisionwasmadetoincludeallindividualsurveyresponsesintheanalysis,regardlessoftheactuary’semployer.
7
Copyright?2023SocietyofActuariesResearchInstitute
SURVEYRESPONDENTPROFILE
Surveyrespondentsrepresentedvariousareasofindustrypractice,withthelargestproportionofrespondents
focusedonthelife,healthandretirementareasinboth2019and2022-23.Therewasaslightlygreaterdiversityofrespondentsin2022-23withgreaterpercentagesofactuariesfromproperty/casualty,othernon-insuranceand
healthareas(figure1a).
Figure1a
SURVEYRESPONDENTPROFILE–PRIMARYAREAOFPRACTICE
2022-23Study
Life
Health
Retirement
Other,noninsurance
Otherinsurance
Property/Casualty
Investment
Management
10%
3%4%1%
1%
6%2%1%
20%42%
15%
50%
20%
26%
2019Study
Also,thereisagoodvarietyintermsoftenureintheactuarialprofession,withaclusterinthe20yearsandlesscategoryandanotherclusterintheover20–30yearcategory(figure1b).Theaveragetenureofactuarial
respondingtothesurveywasjustover21years.
Figure1b
SURVEYRESPONDENTPROFILE–NUMBEROFYEARSINTHEACTUARIALPROFESSION
16.8%
72.6%
10.6%
Under10years
10-30years
Morethan30years
8
Section1:TopActuarialTechnologies
Forpurposesofthisresearch,thetoptechnologiesaredefinedasthosemostfrequentlyidentifiedbyactuariesasexpectedtoincreaseinusageoverthenext12months.Thisdefinitionincludesbothtechnologiescurrentlyusedbytheactuary,aswellasthosethatactuariesarenotusingtodaybutplantobeginusinginthecomingyear.
Thetopthreetechnologiesidentifiedbysurveyrespondentsfor2022-23arethesameasthoseidentifiedby
respondentstothe2019study–datavisualization,predictivemodeling,andcloudcomputingandstorage.Figure2showsthepercentageofrespondentswhoidentifiedthesetoptechnologiesinthe2019and2022-23surveys.Theremainderofthissectionwillexaminetheseresponsesingreaterdetail.
Figure2
TECHNOLOGYAREASEXPECTEDTOGROWFASTESTINTHENEXT12MONTHS*
Datavisualization
PredictiveModeling
Cloudcomputing&storage
0%10%20%30%40%50%60%70%
5
7%
64%
45%
56
51%
%
60%
2019
2022
*Percentagesrepresentthepercentofactuariessurveyedwhobelievetheirusagewillincreaseinthenext12months.
1.1DATAVISUALIZATION
Datavisualizationcontinuestobethemostcommonlycitedtechnologywheregrowthisexpectedforusein
actuarialwork.Fromthecurrentstudy,60%ofsurveyedactuariesutilizedatavisualizationOftenorFrequently,withalmosttwo-thirdsofcurrentusersplanningtoincreasetheirusage(64%),andtheremainingone-thirdexpectingtouseitaboutthesame(figure3).ThemostwidelyuseddatavisualizationtoolsincludeMSOfficeTools(Excel,
PowerPoint,Access)(88%),PowerBI(65%),Tableau(47%),andR/PythonNativeGraphicalTools(41%).
Typically,thesetoolsareusedfordevelopingvisualsforreportsorpresentations(e.g.,pricingormodelingresults,financialresults),fordecision-making(e.g.,predictivemodelselection,assumptionsettingreviews),andforcreatinginteractivedashboardstobeusedfordatareviewandanalysisorforprovidingKeyPerformanceIndicators(KPIs)tolineofbusinessleads.
9
Figure3
CURRENTANDEXPECTEDFUTUREUSEOFDATAVISUALIZATIONBYACTUARIES
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.6
0.64
0.57
0.40.42
0.29
0.18
0.11
Rarely/NoneOccasionalFrequentPlantouseMore
CURRENTUSE
2019Study
2022-23Study
Basedoninterviewsandopen-endedresponses,thistrendisdrivenbyincreasedrecognitionofthevalueofdata
visualizationtoolsinunderstandingandexplainingdata,andtheaccessibilityofmorecentralizeddatasourcesto
actuaries(e.g.,centralizeddatawarehouses).Inaddition,pointandclicktools,likeTableauandPowerBI,aremuchmoreaccessibletotheaverageuserwithamuchquickerlearningperiod.
1.2CLOUDCOMPUTINGANDSTORAGE
Usageofcloudcomputingand/orstoragehasincreasedsignificantlysincethe2019study,fromabout31%usingitfrequentlyoroftento69%in2022-23.Whileoneinthreeexpecttousethistechnologyaboutthesameamount,sixintenanticipateincreasedusage.Thisseemstoverifytheshiftfromstoringdataincentralizedwarehouseson
premisestothird-partystorage,oftencloud-basedproviders.Cloudcomputingismainlybeingusedtofacilitatesharingofdata,allowformoreeffectivecodingcollaboration,andincreasethespeedofcomputationformassivemodelsthatarebeingusedbytheindustryintoday’senvironment.
Basedoninterviewsandopen-endedsurveyresponses,thesechangesarelargelytheresultofmajordata-focusedeffortstorespondtorecentaccountingandregulatorychanges.ImplementationsofIFRS17,LTDI,principles-basedreserving,stochasticmodeling,andpredictivemodelingapplicationswereallcitedasprojectswithcurrentfocusbycompaniesthathavefast-trackedtheneedforgreaterstoragespaceandfasterprocessingspeeds.
Amongthosesurveyed,twoplatformsweremostprevalent–amajority(56%)ofrespondentorganizationsuse
eitherMicrosoftAzureorAmazonWebServices.FarfewermentionedotherservicessuchasSnowflake(18%)andDataBricks(13%).
10
Figure4
CURRENTANDEXPECTEDFUTUREUSEOFCLOUDCOMPUTINGANDSTORAGEAMONGACTUARIES
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.69
0.6
0.51
0.36
0.31
0.18
0.12
0.33
Rarely/NoneOccasionalFrequentPlantouseMore
CURRENTUSE
2019Study
2022-23Study
1.3PREDICTIVEMODELING
Propertyandcasualtyactuarieshavebeenapplyingthesetechniquesformanyyears,andtherestoftheprofessionisincreasinglyfindingnewapplications.Inreviewingtheresponsesinthissection,itisimportanttokeepinmindthatmostoftheintervieweesandsurveyrespondentsarecurrentlyworkinginthelife,healthandretirement
industriesratherthaninproperty/casualty,investmentmanagementorotherinsuranceornon-insuranceareas.
Theuseofpredictivemodelingandresearcharoundpotentialapplicationshasincreasedsubstantiallywithintheactuarialcommunity.In2019,only16%ofsurveyrespondentsindicatedtheywereusingpredictivemodelingoftenorfrequently,whilethefigurehasmorethandoubledforthecurrentreportto40%(figure5).Thiswascoupled
withadecreaseinthosewhoexpecttousepredictivemodelingmoreinthefuture(from56%in2019to45%in2022-23).However,thepotentialincreaseinthenextseveralyearsisstillquitelargeandthedecreaseshouldbeexpectedgiventhesignificantincreaseinfrequentusers.
Figure5
CURRENTANDEXPECTEDFUTUREUSEOFPREDICTIVEANALYTICSAMONGACTUARIES
0.6
0.5
0.4
0.3
0.2
0.1
0
0.56
45
2019Study
2022-23Study
0.45
0.39
0.4
0.
0.32
0.28
0.16
Rarely/NoneOccasionalFrequentPlantouseMore
CURRENTUSE
11
Copyright?2023SocietyofActuariesResearchInstitute
ExcelandRwerethemostcommonlycitedtechnologytoolsusedforpredictivemodeling,with44%and45%ofrespondents,respectively,indicatingthattheyuseoneofbothofthesetoolsintheirwork.ExcelandRwere
followedcloselybyPython,at39%,andSAS(Baseand/orEnterpriseGuideversions)at15%.
Themostcommonlymentionedusecaseforpredictivemodelinginactuarialworkcontinuestobeanalysisand
modeling/forecastingofproductexperience.Thisincludesmortalityandmorbidityexperience,aswellas
policyholderbehaviorfocusedfactors,includinglapseandsurrender,aswellastheutilizationofguaranteedandnon-guaranteedelectedbenefits.Somerespondentstalkedaboutexperimentspairingpredictivemodelingtoolswithbehavioraleconomicsprincipalsinmoreadvancedapplications.Predictivemodelsallowtheactuarytobetterunderstandthekeydriversofproductexperience,allowingformoreaccuratepricingandforecasting.
12
Copyright?2023SocietyofActuariesResearchInstitute
Section2:NewDataSources
Basedoninterviewswithactuariesandsurveyresponsesfromboththe2019and2022-23studies,theutilizationofnewdatasourceshasemergedasanotherfocusforapplicationsofnewactuarialtechnology.Thegrowthinthis
areaseemstobedrivenbyinsurerseffortstounderwritebusiness(lifeandhealthproductswerebothmentioned)
morequickly,butwithoutsignificantlossofriskassessmentaccuracy.Acceleratedunderwritingprogramsarenowprevalentintheindustryandmanyoftheexternaldatasourcescitedbysurveyrespondentsarefocusedinthis
area.
Almosthalfoftheactuariessurveyeduseexternaldata,includingprescriptiondata(48%)andElectronicHealthRecords(EHRs)(48%),asadditionaldatasources.Othercommonexternaldatasourcesincludewearabletrackers(12%)andtelematics(11%)(figure6).SomeInsurTechcompaniesarealsoexamininglinksbetweenmortalityandgeneticinformationorevendentaldatarecords.
Figure6
USEOFNEWSOURCESOFDATA
Unstructureddata TelematicsGenetictesting
Facialrecognition
Wearabletrackers(Fitbit,AppleWatch,etc)PrescriptionData
ElectronicHealthRecords
YesNo
0%10%20%30%40%50%60%70%80%90%100%
Notapplicabletomytypeofinsurancecompany/Unknown
Whiletechnologythatallowscompaniestoaccessprescriptioninformationhasbeeninuseforadecadeormore,theuseofelectronichealthrecordsisnewtomanycompanies.TheabilityofEHRtoallowcompaniestodirectly
accesshealthrecordscouldreplacethelargelymanualandexpensiveprocessofobtainingphysicianhealthrecords,allowforamorecomprehensivehealthdataprofile,andultimatelyleadtoabetterandlesscostlyriskselection
process.
Despitesignificantlylowercurrentadoption,somenewdatasourceswarrantamention,includinginternet-of-things(IoTs),dronetechnology,facialrecognition,andgenetictesting.Companiesareexploringdatasourcedthrough
fitnesstrackersandtelematics.Theseeffortshaveproducedimmenseamountsofdatacausingchallengesinstorage,understanding,anddefiningapplicableuses.
13
Copyright?2023SocietyofActuariesResearchInstitute
Section3:EmergingTechnologies
Inthethreeyearssincethe2019reportwaspublished,theadoptionandutilizationoftopactuarialtechnologies
increasedatafastpace.Atthesametime,newtechnologiescontinuedtoemerge.Thevelocityoftechnological
advancementisvirtuallycertainthateveryyearwillbringnewtoolsforactuariestounderstandandassessfortheirabilitytomakecurrentprocessesmoreefficient,increasethequalityofwork,andmaintainrelevanceinthe
industry.
Intervieweesandsurveyrespondentsidentifiedanumberoftechnologiesthatarenotcurrentlyinwidespreaduse,butareexpectedtogrowinuseamongactuariesinthenearandlongerterm.
3.1ARTIFICIALINTELLIGENCE/MACHINELEARNING
ArtificialIntelligence(AI)wascertainlytopofmindformany,asevidencedbytheinterviewsandopen-endedsurveyresponses.ActuariesinterviewedforthisstudydiscussedthepotentialforassistivetechnologieslikeAIand
machinelearningtorevolutionizetheverynatureofactuarialwork.AIcanbedeployedtoautomateprocesses,
enhanceriskmodeling,andimprovedecision-making.SomeorganizationsarealreadyusingAIforclaimsprocessingandfrauddetection,aswellasacceleratingtheirunderwritingprocesses.Machinelearningalgorithmscananalyzehistoricaldatatomakepredictionsandenhanceriskmanagementstrategies.
TherewerealsoconcernsregardingAIandmachinelearningvoicedbysomeactuaries.Someseethepotentialforautomationtoreplacelower-levelactuarialrolesinthenearfutureandpossiblyevenhigher-leveljobsovertime.
Therewasalsoconcernthattheskillsetrequiredtousemachinelearningmodelseffectivelyandresponsiblymaybemarkedlydifferentfromwhatactuarieshaveusedinthepast.
“Ifeelasthoughthenatureofactuarialtechnologyandworkhasthepotentialtochangedramaticallyoverthenext
fewyearsasactuariesbecomemorefamiliarwithassistivetechnologysuchasAIandmachinelearning.Theskillset
neededtoproperlyusethistechnologymaybequitedifferentfromwhatactuariesareusedto.”
3.2CHATBOTS
Whileonly19%ofrespondentsarecurrentlyusingChatBots(ChatGPT,etc.),another9%areplanningtousethistechnologyinthenext12months.
Intheinsurancesector,ChatBotsarelargelydeployedinsupportareastohandlemoreroutinecustomerserviceorclaimsfunctions.However,ChatBotscollectimportantcustomerdataduringtheseinteractions,whichwouldallowactuariesanddatascientiststoconductdata-drivenanalysisifthatdatacanbecapturedandorganized.
Someactuariesinterviewedforthisstudyarejustbeginningtothinkaboutpotentialusesoftechnologieslike
ChatGPTinactuarialwork.Oneofthecommonlycitedareastobeginexploringistheabilitytoprovidecode
snippetsinlanguageslikeR,Pythonorothercommonlyusedcodinglanguagesandreceiveaquickresponseonhowtocorrectcodelogic.
Wewouldliketopointoutthatutilizationoftechnologieslikethesecouldbelimitedbyinternalgovernance.SomecompaniesarestillevaluatingtheuseofChatGPTand,inthemeantime,haveprohibiteditsuseduetorisk
concerns.Ifapproved,weexpectthepercentageofuserswouldincreasesignificantly.
14
Copyright?2023SocietyofActuariesResearchInstitute
3.3UNSTRUCTUREDDATA
Currently,44%ofsurveyedactuariesuseunstructureddataandanother7%plantouseitinthenext12months.Typically,unstructureddatadoesnothaveapredefineddatamodelororganizationalstructure.Examples
mentionedincluderecordingsortranscriptsofcustomerserviceinteractions,competitorwebsiteinformation,earningscalltranscripts,andinformationfromsocialmediafeedsorothersimilarsources.
Someactuariesseeanopportunitytobetterunderstandkeydriversoflapseandsurrenderbyminingdata
generatedthroughuseofNaturalLanguageProcessingwithcallcenterinteractionsandOpticalContentReadersconvertingpreviouslyanalogdataintoelectronicformats.Todate,actuarieshavetrackedresultsofkeyexperiencefactorsimpactingprofitability,buttheadditionaldatacollectedthroughthesetoolsholdsthepromiseofprovidingexplanationsfortheresultsastheyemerge.
Finally,figure7summarizessomeadditionaltechnologiesmentionedbybothintervieweesandsurveyrespondents,includingroboticprocessautomation,versioncontrolandsharedcodingplatforms(suchasGit),aswellas
distributedledger/blockchaintechnology.Althoughasignificantnumberofrespondentsindicatedtheyworkwithroboticprocessautomation(33%)orversioncontrol/sharedcodingplatforms(43%),blockchainanddistributedledgertechnologieshavenotmadesignificantheadwaywiththissamplepopulation.
Figure7
OTHEREMERGINGTECHNOLOGIES
RoboticProcessAutomation
Versioncontrol/Sharedcodingplatforms
Blockchain
0%10%20%30%40%50%60%70%80%90%100%
YesNoNotapplicabletomytypeofinsurancecompany/Unknown
Inthecontextofthisstudy,roboticprocessautomationreferstotheautomationoftasksthatarecurrently
performedbyactuaries,buthavepotentialtobecompletelyorlargelyautomated,e.g.,automationofstandard
actuarialfinancialreportsthatdrawfrominternaldatasources.Severalintervieweestalkedaboutthecombinationofcentralizedwarehousesmakingdatamuchmoreaccessibletoactuariesandtheemergenceofnewtools,
allowingthemtoeasilypulldataandpopulatestandardreporttemplates.
Expertsbelievethepaceofdevelopmentandintroductionofnewtechnologieswillcontinuefortheforeseeablefuturemeaningthatactuariesneedtobepreparedtoidentify,evaluate,andadoptnewapplicationsinanefficientmannerinordertoremainrelevantasaprofession.
15
Copyright?2023SocietyofActuariesResearchInstitute
Section4:ActuarialCapabilities
Expertsinterviewedaspartofthisprojectareoptimisticthatactuarieswillcontinuetoevolvebylearningnewskillsandeffectivelyusingnewtechnologies.
Whileneweractuariesaregettingmoreexposuretopredictivemodelinganddatasciencetechniquesintheir
training,itismorechallengingforolderactuariestoacquiretheseskills.Manyoftheexpertsinterviewedbelievedtheactuarialprofessionaldevelopmentofferingsshouldintegratemorecodingandpredictivemodelingtechniquesspecificallyinsupportofactuarialfunctionssuchaspricing,reserving,experienceanalysisandassumptionsetting,andmortalitymodeling.
TheSocietyofActuarieshasimplementedchangestobothitsbasiceducationanditsprofessionaldevelopment
programs,includingapredictiveanalyticsexam,anadvancedtopicsinpredictiveanalyticsexam,andanadditionalcertificationinpredictivemodelingtoexpandtheactuarialskillset.
Severalofthoseinterviewedforthisreportfeltthatactuariesshouldnotbetryingtocompetewithdatascientists,butshouldworktomoreeffectivelycomplementeachother.Therequiredskillsetsareoverlappingbut,whiledatascientistsfocusonunderstandingdataandthestatisticalmodelsavailabletomodelthatdata,actuariesare
insuranceandfinancialservicestechnicalexpertswhounderstandthebusiness,theproducts,andtheaccountingandregulatoryfunctionsoftheindustry.Asactuaries,weareuniquelyqualifiedtoworkwithdatascientiststohelpselectandexplainthestatisticalmodelssothattheycanbeleveragedtothegreatestbenefitoftheindustry.
16
Copyright?2023SocietyofActuariesResearchInstitute
Section5:ThePathForward
Thelastquestioninthesurveyallowedactuariestoaddanyadditionalcommentstheyhadregardingthedirectionofactuarialtechnology.
Afewthemesemergehereincluding:
.AutomationandthespeedwithwhichmanybelieveAItechnologywillallowactuariestoeliminatetime-consumingandmanualprocesseswascitedasabenefit.Thiswasalsomentionedasaconcernintermsofhowfutureentry-levelactuarieswillgaintheunderstandingthatcomeswithdoingthework.
.Collaborationwillbecomemorecriticalovertime.Severalexpressedtheimportance
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件安全人才隊伍建設研究-詳解洞察
- 梧州2025年廣西梧州市事業(yè)單位招聘1257人筆試歷年參考題庫附帶答案詳解
- 2025年中國塑鋼垂簾軌市場調查研究報告
- 2025年針織橫機配件項目可行性研究報告
- 廣州廣東廣州市花都區(qū)花山鎮(zhèn)和郁小學臨聘教師招聘筆試歷年參考題庫附帶答案詳解
- 廣東廣東海洋大學后勤保障部招聘非編制水電維修工(第二次)筆試歷年參考題庫附帶答案詳解
- 2025年球衣網布項目可行性研究報告
- 2025年水電解器架項目可行性研究報告
- 2025至2031年中國旋風式二級回收裝置行業(yè)投資前景及策略咨詢研究報告
- 2025年抗菌防霉乳膠漆項目可行性研究報告
- 2025新譯林版英語七年級下單詞表
- 海洋工程設備保溫保冷方案
- 機房設備搬遷及系統(tǒng)割接施工方案
- 醫(yī)療安全(不良)事件報告制度培訓課件
- 主干光纜、支線光纜線路中斷應急預案
- 跨學科主題學習的思考與策略
- 文藝演出排練指導服務合同
- 醫(yī)院消防安全培訓課件(完美版)
- 2024年青田中小學教師招聘真題
- 行政法-9行政確認
- 人教版(2024新版)一年級上冊數學第一單元《數學游戲》單元整體教學設計
評論
0/150
提交評論