版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省宜春市樟樹中學2023-2024學年數(shù)學高一下期末教學質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△ABC中,角A,B,C的對邊分別為a,b,c,若,,則在方向上的投影為()A.1 B.2 C.3 D.42.在中,角所對的邊分邊為,已知,則此三角形的解的情況是()A.有一解 B.有兩解 C.無解 D.有解但解的個數(shù)不確定3.()A.4 B. C.1 D.24.若,,,點C在AB上,且,設,則的值為()A. B. C. D.5.若實數(shù)滿足,則的最小值為()A.4 B.8 C.16 D.326.已知等比數(shù)列滿足,,則()A. B. C. D.7.在中,,,,則的面積為A. B. C. D.8.已知兩個球的表面積之比為,則這兩個球的體積之比為()A. B. C. D.9.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度10.在中,角A,B,C的對邊分別為a,b,c.已知,,,則B為()A. B.或 C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.某幾何體的三視圖如圖所示,則該幾何體的體積為__________.12.已知數(shù)列,,若該數(shù)列是減數(shù)列,則實數(shù)的取值范圍是__________.13.某市三所學校有高三文科學生分別為500人,400人,300人,在三月進行全市聯(lián)考后,準備用分層抽樣的方法從三所高三文科學生中抽取容量為24的樣本,進行成績分析,則應從校高三文科學生中抽取_____________人.14.已知圓截直線所得線段的長度是,則圓M與圓的位置關系是_________.15.數(shù)列中,如果存在使得“,且”成立(其中,),則稱為的一個“谷值”。若且存在“谷值”則實數(shù)的取值范圍是__________.16.函數(shù)的單調(diào)遞減區(qū)間是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,分別為內(nèi)角的對邊,且(1)求的大?。海?)若,求的面積.18.已知函數(shù),其中常數(shù);(1)令,判定函數(shù)的奇偶性,并說明理由;(2)令,將函數(shù)圖像向右平移個單位,再向上平移1個單位,得到函數(shù)的圖像,對任意,求在區(qū)間上零點個數(shù)的所有可能值;19.已知函數(shù).(1)證明函數(shù)在定義域上單調(diào)遞增;(2)求函數(shù)的值域;(3)令,討論函數(shù)零點的個數(shù).20.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數(shù)據(jù)如表所示:零件的個數(shù)個2345加工的時間2.5344.51求出y關于x的線性回歸方程;2試預測加工10個零件需要多少時間?21.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)區(qū)間.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)正弦定理,將已知條件進行轉(zhuǎn)化化簡,結(jié)合兩角和差的正弦公式可求,根據(jù)在方向上的投影為,代入數(shù)值,即可求解.【詳解】因為,所以,即,即,因為,所以,所以,所以在方向上的投影為:.故選:A.【點睛】本題主要考查正弦定理和平面向量投影的應用,根據(jù)正弦定理結(jié)合兩角和差的正弦公式是解決本題的關鍵,屬于中檔題.2、C【解析】由三角形正弦定理可知無解,所以三角形無解,選C.3、A【解析】
分別利用和差公式計算,相加得答案.【詳解】故答案為A【點睛】本題考查了正切的和差公式,意在考查學生的計算能力.4、B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.5、B【解析】
由可以得到,利用基本不等式可求最小值.【詳解】因為,故,因為,故,故,當且僅當時等號成立,故的最小值為8,故選B.【點睛】應用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結(jié)構.求最值時要關注取等條件的驗證.6、C【解析】試題分析:由題意可得,所以,故,選C.考點:本題主要考查等比數(shù)列性質(zhì)及基本運算.7、C【解析】
利用三角形中的正弦定理求出角B,利用三角形內(nèi)角和求出角C,再利用三角形的面積公式求出三角形的面積,求得結(jié)果.【詳解】因為中,,,,由正弦定理得:,所以,所以,所以,所以,故選C.【點睛】該題所考查的是有關三角形面積的求解問題,在解題的過程中,需要注意根據(jù)題中所給的條件,應用正弦定理求得,從而求得,之后應用三角形面積公式求得結(jié)果.8、D【解析】
根據(jù)兩個球的表面積之比求出半徑之比,利用半徑之比求出球的體積比.【詳解】由題知,則.故選:D.【點睛】本題主要考查了球體的表面積公式和體積公式,屬于基礎題.9、D【解析】
先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎題型.10、C【解析】
根據(jù)正弦定理得到,再根據(jù)知,得到答案.【詳解】根據(jù)正弦定理:,即,根據(jù)知,故.故選:.【點睛】本題考查了根據(jù)正弦定理求角度,多解是容易發(fā)生的錯誤.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由三視圖知該幾何體是一個半圓錐挖掉一個三棱錐后剩余的部分,如圖所示,所以其體積為.點睛:求多面體的外接球的面積和體積問題常用方法有(1)三條棱兩兩互相垂直時,可恢復為長方體,利用長方體的體對角線為外接球的直徑,求出球的半徑;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的對稱性,球心為上下底面外接圓的圓心連線的中點,再根據(jù)勾股定理求球的半徑;(3)如果設計幾何體有兩個面相交,可過兩個面的外心分別作兩個面的垂線,垂線的交點為幾何體的球心,本題就是第三種方法.12、【解析】
本題可以先通過得出的解析式,再得出的解析式,最后通過數(shù)列是遞減數(shù)列得出實數(shù)的取值范圍.【詳解】,因為該數(shù)列是遞減數(shù)列,所以即因為所以實數(shù)的取值范圍是.【點睛】本題考察的是遞減數(shù)列的性質(zhì),遞減數(shù)列的后一項減去前一項的值一定是一個負值.13、8【解析】
利用分層抽樣中比例關系列方程可求.【詳解】由已知三所學???cè)藬?shù)為500+400+300=1200,設從校高三文科學生中抽取x人,由分層抽樣的要求及抽取樣本容量為24,所以,,故答案為8.【點睛】本題考查分層抽樣,考查計算求解能力,屬于基本題.14、相交【解析】
根據(jù)直線與圓相交的弦長公式,求出的值,結(jié)合兩圓的位置關系進行判斷即可.【詳解】解:圓的標準方程為,則圓心為,半徑,圓心到直線的距離,圓截直線所得線段的長度是,即,,則圓心為,半徑,圓的圓心為,半徑,則,,,,即兩個圓相交.故答案為:相交.【點睛】本題主要考查直線和圓相交的應用,以及兩圓位置關系的判斷,根據(jù)相交弦長公式求出的值是解決本題的關鍵.15、【解析】
求出,,,當,遞減,遞增,分別討論,,是否存在“谷值”,注意運用單調(diào)性即可.【詳解】解:當時,有,,當,遞減,遞增,且.若時,有,則不存在“谷值”;若時,,則不存在“谷值”;若時,①,則不存在"谷值";②,則不存在"谷值";③,存在"谷值"且為.綜上所述,的取值范圍是故答案為:【點睛】本題考查新定義及運用,考查數(shù)列的單調(diào)性和運用,正確理解新定義是迅速解題的關鍵,是一道中檔題.16、【解析】
求出函數(shù)的定義域,結(jié)合復合函數(shù)求單調(diào)性的方法求解即可.【詳解】由,解得令,則函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增函數(shù)在定義域內(nèi)單調(diào)遞增函數(shù)的單調(diào)遞減區(qū)間是故答案為:【點睛】本題主要考查了復合函數(shù)的單調(diào)性,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)正弦定理將,角化為邊得,即,再由余弦定理求解(2)根據(jù),由正弦定理,求邊b,又,然后代入公式求解.【詳解】(1)因為,由正弦定理得:,即,,又,.(2)因為由正弦定理得,又,所以.【點睛】本題主要考查了正弦定理和余弦定理的應用,還考查了運算求解的能力,屬于中檔題.18、(1)非奇非偶,理由見解析;(2)21或20個.【解析】
(1)先利用輔助角公式化簡,再利用和可判斷為非奇非偶函數(shù).(2)求出的解析式后結(jié)合函數(shù)的圖像、周期及給定區(qū)間的特點可判斷在給定的范圍上的零點的個數(shù).【詳解】(1),則,故不是奇函數(shù),又,,故不是偶函數(shù).綜上,為非奇非偶函數(shù).(2),的圖象如圖所示:令,則,則或,,也就是或者,,所以在形如的區(qū)間上恰有兩個不同零點.把區(qū)間分成10個小區(qū)間,它們分別為:,及,根據(jù)函數(shù)的圖像可知:前9個區(qū)間的長度恰為一個周期且左閉右開,故每個區(qū)間恰有兩個不同的零點,最后一個區(qū)間的長度恰為一個周期且為閉區(qū)間,故該區(qū)間上可能有兩個不同的零點或3個不同的零點.故在區(qū)間上可有21個或者20個零點.【點睛】本題考查正弦型函數(shù)的奇偶性、正弦型函數(shù)在給定范圍上的零點個數(shù),注意說明一個函數(shù)不是奇函數(shù)或不是偶函數(shù),可通過反例來說明,而零點個數(shù)的判斷則需綜合考慮給定區(qū)間的長度、開閉情況及函數(shù)的周期.19、(1)證明見解析;(2);(3)當時,沒有零點;當時,有且僅有一個零點【解析】
(1)求出函數(shù)定義域后直接用定義法即可證明;(2)由題意得,對兩邊同時平方得,求出的取值范圍即可得解;(3)轉(zhuǎn)化條件得,令,利用二次函數(shù)的性質(zhì)分類討論即可得解.【詳解】(1)證明:令,解得,故函數(shù)的定義域為令,由,可得,所以,,故即,所以函數(shù)在定義域上單調(diào)遞增.(2)由,,故,,當時,,有,可得:,故,由,可得,故函數(shù)的值域為,(3)由(2)知,則,令,則,令,①當時,,此時函數(shù)沒有零點,故函數(shù)也沒有零點;②當時,二次函數(shù)的對稱軸為,則函數(shù)在區(qū)間單調(diào)遞增,而,,故函數(shù)有一個零點,又由函數(shù)單調(diào)遞增,可得函數(shù)也只有一個零點;③當時,,二次函數(shù)開口向下,對稱軸,又,,此時函數(shù)沒有零點,故函數(shù)也沒有零點.綜上,當時,函數(shù)沒有零點;當時,函數(shù)有且僅有一個零點.【點睛】本題考查了函數(shù)單調(diào)性的證明、值域的求解和零點問題,考查了轉(zhuǎn)化化歸思想和分類討論思想,屬于中檔題.20、(1);(2)小時【解析】
(1)由已知數(shù)據(jù)求得與的值,則線性回歸方程可求;(2)在(1)中求得的回歸方程中,取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《機電概念設計基礎》課件-運行時行為
- 2024外墻保溫材料綠色施工技術與材料購銷合同協(xié)議2篇
- 換簽租賃合同(2篇)
- 2024年版項目管理實踐之招投標策略3篇
- 2024年田土承包與土地整治服務合同協(xié)議3篇
- 2025年寶雞貨物從業(yè)資格證考試題
- 2025年中衛(wèi)貨運從業(yè)資格證試題庫及答案
- 2025年杭州貨運從業(yè)資格證模擬考試0題題庫
- 2025年福州貨運從業(yè)資格證考500試題
- 2025年哈爾濱貨運從業(yè)資格考試
- 衛(wèi)浴產(chǎn)品世界各國認證介紹
- 個體診所藥品清單
- 國網(wǎng)基建國家電網(wǎng)公司輸變電工程結(jié)算管理辦法
- 深度學習數(shù)學案例(課堂PPT)
- 中國地圖含省份信息可編輯矢量圖
- 臥式鉆床液壓系統(tǒng)設計課件
- 路政運政交通運輸執(zhí)法人員考試題庫
- 水庫維修養(yǎng)護工程施工合同協(xié)議書范本
- MS培養(yǎng)基及配制注意事項
- 企業(yè)技術標準化管理
- 投資學第19章財務分析stu
評論
0/150
提交評論