2022屆湖北省鄂州市梁子湖區(qū)市級(jí)名校中考數(shù)學(xué)模試卷含解析_第1頁(yè)
2022屆湖北省鄂州市梁子湖區(qū)市級(jí)名校中考數(shù)學(xué)模試卷含解析_第2頁(yè)
2022屆湖北省鄂州市梁子湖區(qū)市級(jí)名校中考數(shù)學(xué)模試卷含解析_第3頁(yè)
2022屆湖北省鄂州市梁子湖區(qū)市級(jí)名校中考數(shù)學(xué)模試卷含解析_第4頁(yè)
2022屆湖北省鄂州市梁子湖區(qū)市級(jí)名校中考數(shù)學(xué)模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022屆湖北省鄂州市梁子湖區(qū)市級(jí)名校中考數(shù)學(xué)模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,一個(gè)斜邊長(zhǎng)為10cm的紅色三角形紙片,一個(gè)斜邊長(zhǎng)為6cm的藍(lán)色三角形紙片,一張黃色的正方形紙片,拼成一個(gè)直角三角形,則紅、藍(lán)兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm22.下列計(jì)算正確的是A. B. C. D.3.在下列網(wǎng)格中,小正方形的邊長(zhǎng)為1,點(diǎn)A、B、O都在格點(diǎn)上,則的正弦值是A. B. C. D.4.在反比例函數(shù)的圖象的每一個(gè)分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<15.菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,H為AD邊中點(diǎn),菱形ABCD的周長(zhǎng)為28,則OH的長(zhǎng)等于()A.3.5 B.4 C.7 D.146.如圖,點(diǎn)P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為圓心,OP為半徑的圓與x軸的正半軸交于點(diǎn)A,若△OPA的面積為S,則當(dāng)x增大時(shí),S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變7.哥哥與弟弟的年齡和是18歲,弟弟對(duì)哥哥說(shuō):“當(dāng)我的年齡是你現(xiàn)在年齡的時(shí)候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.8.若正比例函數(shù)y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點(diǎn)A(m,4),且y的值隨x值的增大而減小,則m等于()A.2 B.﹣2 C.4 D.﹣49.如圖是小強(qiáng)用八塊相同的小正方體搭建的一個(gè)積木,它的左視圖是()A. B. C. D.10.若代數(shù)式2x2+3x﹣1的值為1,則代數(shù)式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.311.若二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),坐標(biāo)分別是(x1,0),(x2,0),且.圖象上有一點(diǎn)在軸下方,則下列判斷正確的是()A. B. C. D.12.如圖,△ABC在邊長(zhǎng)為1個(gè)單位的方格紙中,它的頂點(diǎn)在小正方形的頂點(diǎn)位置.如果△ABC的面積為10,且sinA=,那么點(diǎn)C的位置可以在()A.點(diǎn)C1處 B.點(diǎn)C2處 C.點(diǎn)C3處 D.點(diǎn)C4處二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知關(guān)于x的二次函數(shù)y=x2-2x-2,當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,則a的值為________.14.計(jì)算的結(jié)果等于______________________.15.《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?設(shè)有x匹大馬,y匹小馬,根據(jù)題意可列方程組為______.16.關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是▲.17.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使點(diǎn)A落在點(diǎn)A′處,當(dāng)A′E⊥AC時(shí),A′B=____.18.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點(diǎn),若點(diǎn)P是y軸上任意一點(diǎn),則△PAB的面積是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟.19.(6分)已知關(guān)于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無(wú)論實(shí)數(shù)m取何值,方程總有兩個(gè)實(shí)數(shù)根;(2)若方程兩個(gè)根均為正整數(shù),求負(fù)整數(shù)m的值.20.(6分)如圖,△ABC三個(gè)定點(diǎn)坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;以原點(diǎn)O為位似中心,將△A1B1C1放大為原來(lái)的2倍,得到△A2B2C2,請(qǐng)?jiān)诘谌笙迌?nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.21.(6分)如圖,水渠邊有一棵大木瓜樹,樹干DO(不計(jì)粗細(xì))上有兩個(gè)木瓜A、B(不計(jì)大?。瑯涓纱怪庇诘孛?,量得AB=2米,在水渠的對(duì)面與O處于同一水平面的C處測(cè)得木瓜A的仰角為45°、木瓜B的仰角為30°.求C處到樹干DO的距離CO.(結(jié)果精確到1米)(參考數(shù)據(jù):,)22.(8分)旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.已知,△ABC中,AB=AC,∠BAC=α,點(diǎn)D、E在邊BC上,且∠DAE=α.(1)如圖1,當(dāng)α=60°時(shí),將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°到△AFB的位置,連接DF,①求∠DAF的度數(shù);②求證:△ADE≌△ADF;(2)如圖2,當(dāng)α=90°時(shí),猜想BD、DE、CE的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖3,當(dāng)α=120°,BD=4,CE=5時(shí),請(qǐng)直接寫出DE的長(zhǎng)為.23.(8分)如圖,在△ABC中,∠ACB=90°,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O與BC相切于點(diǎn)D,與AB交于點(diǎn)E,連接ED并延長(zhǎng)交AC的延長(zhǎng)線于點(diǎn)F.(1)求證:AE=AF;(2)若DE=3,sin∠BDE=,求AC的長(zhǎng).24.(10分)如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長(zhǎng).25.(10分)為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為度;(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫樹狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.26.(12分)x取哪些整數(shù)值時(shí),不等式5x+2>3(x-1)與x≤2-x都成立?27.(12分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),且B點(diǎn)的坐標(biāo)為(3,0),經(jīng)過A點(diǎn)的直線交拋物線于點(diǎn)D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點(diǎn)E(a,0)作直線EF∥AD,交拋物線于點(diǎn)F,是否存在實(shí)數(shù)a,使得以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請(qǐng)說(shuō)明理由.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

標(biāo)注字母,根據(jù)兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出,即,設(shè)BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍(lán)兩張紙片的面積之和等于大三角形的面積減去正方形的面積計(jì)算即可得解.【詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設(shè)BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍(lán)兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.【點(diǎn)睛】本題考查根據(jù)相似三角形的性質(zhì)求出直角三角形的兩直角邊,利用紅、藍(lán)兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關(guān)鍵.2、C【解析】

根據(jù)同類項(xiàng)的定義、同底數(shù)冪的除法、單項(xiàng)式乘單項(xiàng)式法則和積的乘方逐一判斷即可.【詳解】、與不是同類項(xiàng),不能合并,此選項(xiàng)錯(cuò)誤;、,此選項(xiàng)錯(cuò)誤;、,此選項(xiàng)正確;、,此選項(xiàng)錯(cuò)誤.故選:.【點(diǎn)睛】此題考查的是整式的運(yùn)算,掌握同類項(xiàng)的定義、同底數(shù)冪的除法、單項(xiàng)式乘單項(xiàng)式法則和積的乘方是解決此題的關(guān)鍵.3、A【解析】

由題意根據(jù)勾股定理求出OA,進(jìn)而根據(jù)正弦的定義進(jìn)行分析解答即可.【詳解】解:由題意得,,,由勾股定理得,,.故選:A.【點(diǎn)睛】本題考查的是銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對(duì)邊比斜邊,余弦為鄰邊比斜邊,正切為對(duì)邊比鄰邊.4、A【解析】

根據(jù)反比例函數(shù)的性質(zhì),當(dāng)反比例函數(shù)的系數(shù)大于0時(shí),在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【詳解】解:根據(jù)題意,在反比例函數(shù)圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點(diǎn)評(píng)】本題考查了反比例函數(shù)的性質(zhì):①當(dāng)k>0時(shí),圖象分別位于第一、三象限;當(dāng)k<0時(shí),圖象分別位于第二、四象限.②當(dāng)k>0時(shí),在同一個(gè)象限內(nèi),y隨x的增大而減小;當(dāng)k<0時(shí),在同一個(gè)象限,y隨x的增大而增大.5、A【解析】

根據(jù)菱形的四條邊都相等求出AB,菱形的對(duì)角線互相平分可得OB=OD,然后判斷出OH是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得OHAB.【詳解】∵菱形ABCD的周長(zhǎng)為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點(diǎn),∴OH是△ABD的中位線,∴OHAB7=3.1.故選A.【點(diǎn)睛】本題考查了菱形的對(duì)角線互相平分的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關(guān)鍵.6、D【解析】

作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點(diǎn),過這一個(gè)點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.7、D【解析】試題解析:設(shè)現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點(diǎn):由實(shí)際問題抽象出二元一次方程組8、B【解析】

利用待定系數(shù)法求出m,再結(jié)合函數(shù)的性質(zhì)即可解決問題.【詳解】解:∵y=mx(m是常數(shù),m≠0)的圖象經(jīng)過點(diǎn)A(m,4),∴m2=4,∴m=±2,∵y的值隨x值的增大而減小,∴m<0,∴m=﹣2,故選:B.【點(diǎn)睛】本題考查待定系數(shù)法,一次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考常考題型.9、D【解析】

左視圖從左往右,2列正方形的個(gè)數(shù)依次為2,1,依此得出圖形D正確.故選D.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?0、D【解析】

由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計(jì)算可得.【詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.【點(diǎn)睛】本題主要考查代數(shù)式的求值,運(yùn)用整體代入的思想是解題的關(guān)鍵.11、D【解析】

根據(jù)拋物線與x軸有兩個(gè)不同的交點(diǎn),根的判別式△>0,再分a>0和a<0兩種情況對(duì)C、D選項(xiàng)討論即可得解.【詳解】A、二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸有兩個(gè)交點(diǎn)無(wú)法確定a的正負(fù)情況,故本選項(xiàng)錯(cuò)誤;B、∵x1<x2,∴△=b2-4ac>0,故本選項(xiàng)錯(cuò)誤;C、若a>0,則x1<x0<x2,若a<0,則x0<x1<x2或x1<x2<x0,故本選項(xiàng)錯(cuò)誤;D、若a>0,則x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,則(x0-x1)與(x0-x2)同號(hào),∴a(x0-x1)(x0-x2)<0,綜上所述,a(x0-x1)(x0-x2)<0正確,故本選項(xiàng)正確.12、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、-1或1【解析】

利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出當(dāng)y=1時(shí)x的值,結(jié)合當(dāng)a≤x≤a+2時(shí)函數(shù)有最大值1,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論.【詳解】解:當(dāng)y=1時(shí),x2-2x-2=1,

解得:x1=-1,x2=3,

∵當(dāng)a≤x≤a+2時(shí),函數(shù)有最大值1,

∴a=-1或a+2=3,即a=1.

故答案為-1或1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及二次函數(shù)的最值,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征找出當(dāng)y=1時(shí)x的值是解題的關(guān)鍵.14、【解析】

根據(jù)完全平方式可求解,完全平方式為【詳解】【點(diǎn)睛】此題主要考查二次根式的運(yùn)算,完全平方式的正確運(yùn)用是解題關(guān)鍵15、【解析】分析:根據(jù)題意可以列出相應(yīng)的方程組,從而可以解答本題.詳解:由題意可得,,故答案為點(diǎn)睛:本題考查由實(shí)際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.16、k<且k≠1.【解析】根據(jù)一元二次方程kx2-x+1=1有兩個(gè)不相等的實(shí)數(shù)根,知△=b2-4ac>1,然后據(jù)此列出關(guān)于k的方程,解方程,結(jié)合一元二次方程的定義即可求解:∵有兩個(gè)不相等的實(shí)數(shù)根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.17、或7【解析】

分兩種情況:①如圖1,作輔助線,構(gòu)建矩形,先由勾股定理求斜邊AB=10,由中點(diǎn)的定義求出AD和BD的長(zhǎng),證明四邊形HFGB是矩形,根據(jù)同角的三角函數(shù)列式可以求DG和DF的長(zhǎng),并由翻折的性質(zhì)得:∠DA'E=∠A,A'D=AD=5,由矩形性質(zhì)和勾股定理可以得出結(jié)論:A'B=;②如圖2,作輔助線,構(gòu)建矩形A'MNF,同理可以求出A'B的長(zhǎng).【詳解】解:分兩種情況:如圖1,過D作DG⊥BC與G,交A'E與F,過B作BH⊥A'E與H,D為AB的中點(diǎn),BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過D作MN//AC,交BC與于N,過A'作A'F//AC,交BC的延長(zhǎng)線于F,延長(zhǎng)A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長(zhǎng)為或.故答案為:或.【點(diǎn)睛】本題主要考查三角形翻轉(zhuǎn)后的性質(zhì),注意不同的情況需分情況討論.18、.【解析】

解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點(diǎn),∴點(diǎn)P到直線BC的距離為1.∴△PAB的面積.故答案為:.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟.19、(1)見解析;(2)m=-1.【解析】

(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=1>1,由此即可證出:無(wú)論實(shí)數(shù)m取什么值,方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根據(jù)已知條件即可得出結(jié)論.【詳解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴無(wú)論m取何值,(m+1)2恒大于等于1∴原方程總有兩個(gè)實(shí)數(shù)根(2)原方程可化為:(x-1)(x-m-2)=1∴x1=1,x2=m+2∵方程兩個(gè)根均為正整數(shù),且m為負(fù)整數(shù)∴m=-1.【點(diǎn)睛】本題考查了一元二次方程與根的判別式,解題的關(guān)鍵是熟練的掌握根的判別式與根據(jù)因式分解法解一元二次方程.20、(1)見解析;(2)圖見解析;.【解析】

(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于y軸的對(duì)稱點(diǎn)A1、B1、C1的位置,然后順次連接即可.(2)連接A1O并延長(zhǎng)至A2,使A2O=2A1O,連接B1O并延長(zhǎng)至B2,使B2O=2B1O,連接C1O并延長(zhǎng)至C2,使C2O=2C1O,然后順次連接即可,再根據(jù)相似三角形面積的比等于相似比的平方解答.【詳解】解:(1)△A1B1C1如圖所示.(2)△A2B2C2如圖所示.∵△A1B1C1放大為原來(lái)的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比為.∴S△A1B1C1:S△A2B2C2=()2=.21、解:設(shè)OC=x,在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.在Rt△BOC中,∵∠BCO=30°,∴.∵AB=OA﹣OB=,解得.∴OC=5米.答:C處到樹干DO的距離CO為5米.【解析】解直角三角形的應(yīng)用(仰角俯角問題),銳角三角函數(shù)定義,特殊角的三角函數(shù)值.【分析】設(shè)OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根據(jù)AB=OA-OB=2即可得出結(jié)論.22、(1)①30°②見解析(2)BD2+CE2=DE2(3)【解析】

(1)①利用旋轉(zhuǎn)的性質(zhì)得出∠FAB=∠CAE,再用角的和即可得出結(jié)論;②利用SAS判斷出△ADE≌△ADF,即可得出結(jié)論;(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結(jié)論;(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,F(xiàn)M,最后用勾股定理即可得出結(jié)論.【詳解】解:(1)①由旋轉(zhuǎn)得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋轉(zhuǎn)知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如圖2,將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根據(jù)勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如圖3,將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,過點(diǎn)F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴,∵BD=4,∴DM=BD﹣BM=,根據(jù)勾股定理得,,∴DE=DF=,故答案為.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,構(gòu)造全等三角形和直角三角形是解本題的關(guān)鍵.23、(1)證明見解析;(2)1.【解析】

(1)根據(jù)切線的性質(zhì)和平行線的性質(zhì)解答即可;(2)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可.【詳解】(1)連接OD,∵OD=OE,∴∠ODE=∠OED.∵直線BC為⊙O的切線,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)連接AD,∵AE是⊙O的直徑,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,=sin∠DAF=sin∠BDE=,∴AF=3DF=9,在Rt△CDF中,=sin∠CDF=sin∠BDE=,∴CF=DF=1,∴AC=AF﹣CF=1.【點(diǎn)睛】本題考查了切線的性質(zhì),解直角三角形的應(yīng)用,等腰三角形的判定等,綜合性較強(qiáng),正確添加輔助線、熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.24、(1)(2)證明見解析;(3)1.【解析】

(1)由PD切⊙O于點(diǎn)C,AD與過點(diǎn)C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;

(2)由條件可得∠CAO=∠PCB,結(jié)合條件可得∠PCF=∠PFC,即可證得PC=PF;

(3)易證△PAC∽△PCB,由相似三角形的性質(zhì)可得到,又因?yàn)閠an∠ABC=,所以可得=,進(jìn)而可得到=,設(shè)PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進(jìn)而可建立關(guān)于k的方程,解方程求出k的值即可求出PC的長(zhǎng).【詳解】(1)證明:∵PD切⊙O于點(diǎn)C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設(shè)PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點(diǎn)睛】此題考查了和圓有關(guān)的綜合性題目,用到的知識(shí)點(diǎn)有:切線的性質(zhì)、相似三角形的判定與性質(zhì)、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質(zhì).25、(1)2、45、20;(2)72;(3)【解析】分析:(1)根據(jù)A等次人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)乘以D等

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論