版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年廣東省江門市恩平市達標名校中考數(shù)學全真模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.關于x的一元二次方程x2-4x+k=0有兩個相等的實數(shù)根,則k的值是()A.2 B.-2 C.4 D.-42.直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)3.如圖,線段AB兩個端點的坐標分別為A(2,2)、B(3,1),以原點O為位似中心,在第一象限內將線段AB擴大為原來的2倍后得到線段CD,則端點C的坐標分別為()A.(4,4) B.(3,3) C.(3,1) D.(4,1)4.若函數(shù)y=kx﹣b的圖象如圖所示,則關于x的不等式k(x﹣3)﹣b>0的解集為()A.x<2 B.x>2 C.x<5 D.x>55.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶36.如圖,在平面直角坐標系中,正方形的頂點在軸上,且,,則正方形的面積是()A. B. C. D.7.如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為()A.115° B.120° C.130° D.140°8.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數(shù)關系.則下列說法正確的是()A.兩車同時到達乙地B.轎車在行駛過程中進行了提速C.貨車出發(fā)3小時后,轎車追上貨車D.兩車在前80千米的速度相等9.若2<<3,則a的值可以是()A.﹣7 B. C. D.1210.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.化簡;÷(﹣1)=______.12.點C在射線AB上,若AB=3,BC=2,則AC為_____.13.已知點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),則ab的值為_____.14.拋物線y=﹣x2+4x﹣1的頂點坐標為.15.若式子有意義,則x的取值范圍是______.16.如圖,在矩形ABCD中,點E是CD的中點,點F是BC上一點,且FC=2BF,連接AE,EF.若AB=2,AD=3,則tan∠AEF的值是_____.三、解答題(共8題,共72分)17.(8分)如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.(1)求二次函數(shù)的表達式;(2)當﹣<x<1時,請求出y的取值范圍;(3)連接AD,線段OC上有一點E,點E關于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標.18.(8分)如圖1,在長方形ABCD中,,,點P從A出發(fā),沿的路線運動,到D停止;點Q從D點出發(fā),沿路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒、,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵搿?P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是的面積和運動時間(秒)的圖象.(1)求出a值;(2)設點P已行的路程為,點Q還剩的路程為,請分別求出改變速度后,和運動時間(秒)的關系式;(3)求P、Q兩點都在BC邊上,x為何值時P,Q兩點相距3cm?19.(8分)某興趣小組進行活動,每個男生都頭戴藍色帽子,每個女生都頭戴紅色帽子.帽子戴好后,每個男生都看見戴紅色帽子的人數(shù)比戴藍色帽子的人數(shù)的2倍少1,而每個女生都看見戴藍色帽子的人數(shù)是戴紅色帽子的人數(shù)的.問該興趣小組男生、女生各有多少人?20.(8分)科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準確地放入相應的格口,還會感應避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.(1)求兩種機器人每臺每小時各分揀多少件包裹;(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應購進A種機器人多少臺?21.(8分)小敏參加答題游戲,答對最后兩道單選題就順利通關.第一道單選題有3個選項,,,第二道單選題有4個選項,,,,這兩道題小敏都不會,不過小敏還有一個“求助”機會,使用“求助”可以去掉其中一道題的一個錯誤選項.假設第一道題的正確選項是,第二道題的正確選項是,解答下列問題:(1)如果小敏第一道題不使用“求助”,那么她答對第一道題的概率是________;(2)如果小敏將“求助”留在第二道題使用,用畫樹狀圖或列表的方法,求小敏順利通關的概率;(3)小敏選第________道題(選“一”或“二”)使用“求助”,順利通關的可能性更大.22.(10分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉過程中,當∠OAG′是直角時,求α的度數(shù);②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結果不必說明理由.23.(12分)計算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.24.近年來,新能源汽車以其舒適環(huán)保、節(jié)能經(jīng)濟的優(yōu)勢受到熱捧,隨之而來的就是新能汽車銷量的急速增加,當前市場上新能漂汽車從動力上分純電動和混合動力兩種,從用途上又分為乘用式和商用式兩種,據(jù)中國汽車工業(yè)協(xié)會提供的信息,2017年全年新能源乘用車的累計銷量為57.9萬輛,其中,純電動乘用車銷量為46.8萬輛,混合動力乘用車銷量為11.1萬輛;2017年全年新能源商用車的累計銷量為19.8萬輛,其中,純電動商用車銷量為18.4萬輛,混合動力商用車銷量為1.4萬輛,請根據(jù)以上材料解答下列問題:(1)請用統(tǒng)計表表示我國2017年新能源汽車各類車型銷量情況;(2)小穎根據(jù)上述信息,計算出2017年我國新能源各類車型總銷量為77.7萬輛,并繪制了“2017年我國新能源汽車四類車型銷量比例”的扇形統(tǒng)計圖,如圖1,請你將該圖補充完整(其中的百分數(shù)精確到0.1%);(3)2017年我國新能源乘用車銷量最高的十個城市排名情況如圖2,請根據(jù)圖2中信息寫出這些城市新能源乘用車銷售情況的特點(寫出一條即可);(4)數(shù)據(jù)顯示,2018年1~3月的新能源乘用車總銷量排行榜上位居前四的廠家是比亞迪、北汽、上汽、江準,參加社會實踐的大學生小王想對其中兩個廠家進行深入調研,他將四個完全相同的乒乓球進行編號(用“1,2,3,4”依次對應上述四個廠家),并將乒乓球放入不透明的袋子中攪勻,從中一次拿出兩個乒乓球,根據(jù)乒乓球上的編號決定要調研的廠家.求小王恰好調研“比亞迪”和“江淮”這兩個廠家的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
對于一元二次方程a+bx+c=0,當Δ=-4ac=0時,方程有兩個相等的實數(shù)根.即16-4k=0,解得:k=4.考點:一元二次方程根的判別式2、C【解析】
作點D關于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點坐標為A(﹣6,0)和點B(0,4),因點C、D分別為線段AB、OB的中點,可得點C(﹣3,1),點D(0,1).再由點D′和點D關于x軸對稱,可知點D′的坐標為(0,﹣1).設直線CD′的解析式為y=kx+b,直線CD′過點C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點P的坐標為(﹣,0).故答案選C.考點:一次函數(shù)圖象上點的坐標特征;軸對稱-最短路線問題.3、A【解析】
利用位似圖形的性質結合對應點坐標與位似比的關系得出C點坐標.【詳解】∵以原點O為位似中心,在第一象限內將線段AB擴大為原來的2倍后得到線段CD,∴A點與C點是對應點,∵C點的對應點A的坐標為(2,2),位似比為1:2,∴點C的坐標為:(4,4)故選A.【點睛】本題考查了位似變換,正確把握位似比與對應點坐標的關系是解題關鍵.4、C【解析】
根據(jù)函數(shù)圖象知:一次函數(shù)過點(2,0);將此點坐標代入一次函數(shù)的解析式中,可求出k、b的關系式;然后將k、b的關系式代入k(x﹣3)﹣b>0中進行求解即可.【詳解】解:∵一次函數(shù)y=kx﹣b經(jīng)過點(2,0),∴2k﹣b=0,b=2k.函數(shù)值y隨x的增大而減小,則k<0;解關于k(x﹣3)﹣b>0,移項得:kx>3k+b,即kx>1k;兩邊同時除以k,因為k<0,因而解集是x<1.故選C.【點睛】本題考查一次函數(shù)與一元一次不等式.5、A【解析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點晴:本題主要通過證出兩個三角形是相似三角形,再利用相似三角形的性質:相似三角形的面積之比等于對應邊之比的平方,進而將求面積比的問題轉化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關系(銳角三角形函數(shù))即可得出對應邊之比,進而得到面積比.6、D【解析】作BE⊥OA于點E.則AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,,∴正方形的面積是:,故選D.7、A【解析】解:∵把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故選A.8、B【解析】
①根據(jù)函數(shù)的圖象即可直接得出結論;②求得直線OA和DC的解析式,求得交點坐標即可;③由圖象無法求得B的橫坐標;④分別進行運算即可得出結論.【詳解】由題意和圖可得,轎車先到達乙地,故選項A錯誤,轎車在行駛過程中進行了提速,故選項B正確,貨車的速度是:300÷5=60千米/時,轎車在BC段對應的速度是:千米/時,故選項D錯誤,設貨車對應的函數(shù)解析式為y=kx,5k=300,得k=60,即貨車對應的函數(shù)解析式為y=60x,設CD段轎車對應的函數(shù)解析式為y=ax+b,,得,即CD段轎車對應的函數(shù)解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發(fā)3.9小時后,轎車追上貨車,故選項C錯誤,故選:B.【點睛】此題考查一次函數(shù)的應用,解題的關鍵在于利用題中信息列出函數(shù)解析式9、C【解析】
根據(jù)已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項.【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項,只有選項C符合題意.故選C.【點睛】考查了估算無理數(shù)的大小,估算無理數(shù)大小要用夾逼法.10、A【解析】
根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、-【解析】
直接利用分式的混合運算法則即可得出.【詳解】原式,,,.故答案為.【點睛】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.12、2或2.【解析】解:本題有兩種情形:(2)當點C在線段AB上時,如圖,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)當點C在線段AB的延長線上時,如圖,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案為2或2.點睛:在未畫圖類問題中,正確畫圖很重要,本題滲透了分類討論的思想,體現(xiàn)了思維的嚴密性,在今后解決類似的問題時,要防止漏解.13、2【解析】
根據(jù)“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”求出ab的值即可.【詳解】∵點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點睛】本題考查了關于x軸,y軸對稱的點的坐標,解題的關鍵是熟練的掌握關于y軸對稱的點的坐標的性質.14、(2,3)【解析】試題分析:利用配方法將拋物線的解析式y(tǒng)=﹣x2+4x﹣1轉化為頂點式解析式y(tǒng)=﹣(x﹣2)2+3,然后求其頂點坐標為:(2,3).考點:二次函數(shù)的性質15、x>.【解析】解:依題意得:2x+3>1.解得x>.故答案為x>.16、1.【解析】
連接AF,由E是CD的中點、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,則可證△ABF≌△FCE,進一步可得到△AFE是等腰直角三角形,則∠AEF=45°.【詳解】解:連接AF,∵E是CD的中點,∴CE=,AB=2,∵FC=2BF,AD=3,∴BF=1,CF=2,∴BF=CE,F(xiàn)C=AB,∵∠B=∠C=90°,∴△ABF≌△FCE,∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,∴∠AFE=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,∴tan∠AEF=1.故答案為:1.【點睛】本題結合三角形全等考查了三角函數(shù)的知識.三、解答題(共8題,共72分)17、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).【解析】
(1)利用對稱軸公式求出m的值,即可確定出解析式;(1)根據(jù)x的范圍,利用二次函數(shù)的增減性確定出y的范圍即可;(3)根據(jù)題意確定出D與A坐標,進而求出直線AD解析式,設出E坐標,利用對稱性確定出E坐標即可.【詳解】(1)∵拋物線對稱軸為直線x=﹣1,∴﹣=﹣1,即m=﹣1,則二次函數(shù)解析式為y=﹣x1﹣1x+6;(1)當x=﹣時,y=;當x=1時,y=.∵﹣<x<1位于對稱軸右側,y隨x的增大而減小,∴<y<;(3)當x=﹣1時,y=8,∴頂點D的坐標是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.∵點A在點B的左側,∴點A坐標為(﹣6,0).設直線AD解析式為y=kx+b,可得:,解得:,即直線AD解析式為y=1x+11.設E(0,n),則有E′(﹣4,n),代入y=1x+11中得:n=4,則點E坐標為(0,4).【點睛】本題考查了拋物線與x軸的交點,以及二次函數(shù)的性質,熟練掌握二次函數(shù)的性質是解答本題的關鍵.18、(1)6;(2);;(3)10或;【解析】
(1)根據(jù)圖象變化確定a秒時,P點位置,利用面積求a;(2)P、Q兩點的函數(shù)關系式都是在運動6秒的基礎上得到的,因此注意在總時間內減去6秒;(3)以(2)為基礎可知,兩個點相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.【詳解】(1)由圖象可知,當點P在BC上運動時,△APD的面積保持不變,則a秒時,點P在AB上.,∴AP=6,則a=6;(2)由(1)6秒后點P變速,則點P已行的路程為y1=6+2(x﹣6)=2x﹣6,∵Q點路程總長為34cm,第6秒時已經(jīng)走12cm,故點Q還剩的路程為y2=34﹣12﹣;(3)當P、Q兩點相遇前相距3cm時,﹣(2x﹣6)=3,解得x=10,當P、Q兩點相遇后相距3cm時,(2x﹣6)﹣()=3,解得x=,∴當x=10或時,P、Q兩點相距3cm【點睛】本題是雙動點問題,解答時應注意分析圖象的變化與動點運動位置之間的關系.列函數(shù)關系式時,要考慮到時間x的連續(xù)性才能直接列出函數(shù)關系式.19、男生有12人,女生有21人.【解析】
設該興趣小組男生有x人,女生有y人,然后再根據(jù):(男生的人數(shù)-1)×2-1=女生的人數(shù),(女生的人數(shù)-1)×=男生的人數(shù)
,列出方程組,再進行求解即可.【詳解】設該興趣小組男生有x人,女生有y人,依題意得:,解得:.答:該興趣小組男生有12人,女生有21人.【點睛】本題主要考查了二元一次方程組的應用,解題的關鍵是明確題中各個量之間的關系,并找出等量關系列出方程組.20、(1)A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹(2)最多應購進A種機器人100臺【解析】
(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,根據(jù)題意列方程組即可得到結論;(2)設最多應購進A種機器人a臺,購進B種機器人(200?a)臺,由題意得,根據(jù)題意兩不等式即可得到結論.【詳解】(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,由題意得,,解得,,答:A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹;(2)設最多應購進A種機器人a臺,購進B種機器人(200﹣a)臺,由題意得,30a+40(200﹣a)≥7000,解得:a≤100,則最多應購進A種機器人100臺.【點睛】本題考查了二元一次方程組,一元一次不等式的應用,正確的理解題意是解題的關鍵.21、(1);(2);(3)一.【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖(用Z表示正確選項,C表示錯誤選項)展示所有9種等可能的結果數(shù),找出小敏順利通關的結果數(shù),然后根據(jù)概率公式計算出小敏順利通關的概率;
(3)與(2)方法一樣求出小穎將“求助”留在第一道題使用,小敏順利通關的概率,然后比較兩個概率的大小可判斷小敏在答第幾道題時使用“求助”.【詳解】解:(1)若小敏第一道題不使用“求助”,那么小敏答對第一道題的概率=;
故答案為;
(2)若小敏將“求助”留在第二道題使用,那么小敏順利通關的概率是.理由如下:
畫樹狀圖為:(用Z表示正確選項,C表示錯誤選項)
共有9種等可能的結果數(shù),其中小穎順利通關的結果數(shù)為1,
所以小敏順利通關的概率=;
(3)若小敏將“求助”留在第一道題使用,畫樹狀圖為:(用Z表示正確選項,C表示錯誤選項)
共有8種等可能的結果數(shù),其中小敏順利通關的結果數(shù)為1,所以小敏將“求助”留在第一道題使用,小敏順利通關的概率=,
由于>,
所以建議小敏在答第一道題時使用“求助”.【點睛】本題考查了用畫樹狀圖的方法求概率,掌握其畫法是解題的關鍵.22、(1)見解析;(1)30°或150°,的長最大值為,此時.【解析】
(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(1)①在旋轉過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當∠OAG′=90°時,α=150°;②當旋轉到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′=+1,此時α=315°.【詳解】(1)如圖1,延長ED交AG于點H,∵點O是正方形ABCD兩對角線的交點,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(1)①在旋轉過程中,∠OAG′成為直角有兩種情況:(Ⅰ)α由0°增大到90°過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《基因突變和基因重組》教學設計1
- 課題申報參考:競合供應鏈企業(yè)社會責任審計、運營與融資策略研究
- 課題申報參考:檢察公益訴訟立法研究
- 2025年上半年水產漁業(yè)生產情況總結及下半年工作安排(三篇)
- 二零二五版房地產土地使用權交易爭議解決協(xié)議3篇
- 影視劇臨時演員聘用協(xié)議2025版2篇
- 2025年度個人與派遣公司教育培訓派遣合同范本4篇
- 二零二五年鍋爐維修安全風險評估與處理協(xié)議3篇
- 二零二五版新材料產業(yè)臨時用工聘用管理協(xié)議3篇
- 2025年香港公司股權轉讓手續(xù)糾紛解決合同3篇
- 慈溪高一期末數(shù)學試卷
- 天津市武清區(qū)2024-2025學年八年級(上)期末物理試卷(含解析)
- 《徐霞客傳正版》課件
- 江西硅博化工有限公司年產5000噸硅樹脂項目環(huán)境影響評價
- 高端民用航空復材智能制造交付中心項目環(huán)評資料環(huán)境影響
- 量子醫(yī)學成像學行業(yè)研究報告
- DB22T 3268-2021 糧食收儲企業(yè)安全生產標準化評定規(guī)范
- 辦事居間協(xié)議合同范例
- 正念減壓療法詳解課件
- 學校校本課程《英文電影鑒賞》文本
- 華為HCSA-Presales-IT售前認證備考試題及答案
評論
0/150
提交評論