




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022屆江西省宜春市重點中學(xué)中考數(shù)學(xué)最后沖刺模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,小明為了測量河寬AB,先在BA延長線上取一點D,再在同岸取一點C,測得∠CAD=60°,∠BCA=30°,AC=15m,那么河AB寬為()A.15m B.m C.m D.m2.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關(guān)于OA的對稱點Q恰好落在線段MN上,點P關(guān)于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm3.運用乘法公式計算(4+x)(4﹣x)的結(jié)果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x24.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.5.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y66.某品牌的飲水機接通電源就進入自動程序:開機加熱到水溫100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機后用時(min)成反比例關(guān)系,直至水溫降至30℃,飲水機關(guān)機.飲水機關(guān)機后即刻自動開機,重復(fù)上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間x(min)的關(guān)系如圖所示,水溫從100℃降到35℃所用的時間是()A.27分鐘 B.20分鐘 C.13分鐘 D.7分鐘7.等式組的解集在下列數(shù)軸上表示正確的是(
).A.
B.C.
D.8.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.9.綠豆在相同條件下的發(fā)芽試驗,結(jié)果如下表所示:每批粒數(shù)n100300400600100020003000發(fā)芽的粒數(shù)m9628238257094819042850發(fā)芽的頻率0.9600.9400.9550.9500.9480.9520.950下面有三個推斷:①當(dāng)n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率是0.955;②根據(jù)上表,估計綠豆發(fā)芽的概率是0.95;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為3800粒.其中推斷合理的是()A.① B.①② C.①③ D.②③10.如圖,直線m∥n,直角三角板ABC的頂點A在直線m上,則∠α的余角等于()A.19° B.38° C.42° D.52°11.如圖,在?ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,若AB=6,EF=2,則BC的長為()A.8 B.10 C.12 D.1412.已知,下列說法中,不正確的是()A. B.與方向相同C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時測得米的影長為米,則電線桿的高度為__________米.14.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B=______15.兩個反比例函數(shù)y=kx和y=1x在第一象限內(nèi)的圖象如圖所示,點P在y=kx的圖象上,PC⊥x軸于點C,交16.在一次摸球?qū)嶒炛?,摸球箱?nèi)放有白色、黃色乒乓球共50個,這兩種乒乓球的大小、材質(zhì)都相同.小明發(fā)現(xiàn),摸到白色乒乓球的頻率穩(wěn)定在60%左右,則箱內(nèi)黃色乒乓球的個數(shù)很可能是________.17.如圖,AB是⊙O的直徑,點E是的中點,連接AF交過E的切線于點D,AB的延長線交該切線于點C,若∠C=30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____.18.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是_________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(1)觀察猜想如圖①點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為______;(2)問題解決如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長;(3)拓展延伸如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.20.(6分)計算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.21.(6分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.22.(8分)已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2與x軸的交點B(2,0)(1)求a、b的值;(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;(3)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設(shè)移動時間為t秒,當(dāng)△PAC為等腰三角形時,直接寫出t的值.23.(8分)(5分)計算:(124.(10分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線;(2)當(dāng)BC=4,AC=6時,求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.25.(10分)已知△ABC在平面直角坐標(biāo)系中的位置如圖所示.分別寫出圖中點A和點C的坐標(biāo);畫出△ABC繞點C按順時針方向旋轉(zhuǎn)90°后的△A′B′C′;求點A旋轉(zhuǎn)到點A′所經(jīng)過的路線長(結(jié)果保留π).26.(12分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當(dāng)α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識便可解決這個問題.請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當(dāng)∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請直接寫出線段BE的長為.27.(12分)如圖,的頂點是方格紙中的三個格點,請按要求完成下列作圖,①僅用無刻度直尺,且不能用直尺中的直角;②保留作圖痕跡.在圖1中畫出邊上的中線;在圖2中畫出,使得.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】過C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC?cos30°=15×=,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE?tan60°=×=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故選A.【點睛】本題考查的知識點是解直角三角形的應(yīng)用,關(guān)鍵是構(gòu)建直角三角形,解直角三角形求出答案.2、A【解析】試題分析:利用軸對稱圖形的性質(zhì)得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質(zhì)3、B【解析】
根據(jù)平方差公式計算即可得解.【詳解】,故選:B.【點睛】本題主要考查了整式的乘法公式,熟練掌握平方差公式的運算是解決本題的關(guān)鍵.4、D【解析】
畫出樹狀圖得出所有等可能的情況數(shù),找出恰好是兩個紅球的情況數(shù),即可求出所求的概率.【詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.【點睛】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、D【解析】
根據(jù)合并同類項的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質(zhì),對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關(guān)的整式運算法則要求學(xué)生很熟練,才能正確求出結(jié)果.6、C【解析】
先利用待定系數(shù)法求函數(shù)解析式,然后將y=35代入,從而求解.【詳解】解:設(shè)反比例函數(shù)關(guān)系式為:,將(7,100)代入,得k=700,∴,將y=35代入,解得;∴水溫從100℃降到35℃所用的時間是:20-7=13,故選C.【點睛】本題考查反比例函數(shù)的應(yīng)用,利用數(shù)形結(jié)合思想解題是關(guān)鍵.7、B【解析】【分析】分別求出每一個不等式的解集,然后在數(shù)軸上表示出每個不等式的解集,對比即可得.【詳解】,解不等式①得,x>-3,解不等式②得,x≤2,在數(shù)軸上表示①、②的解集如圖所示,故選B.【點睛】本題考查了解一元一次不等式組,在數(shù)軸上表示不等式的解集,不等式的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.8、A【解析】A.是軸對稱圖形不是中心對稱圖形,正確;B.是軸對稱圖形也是中心對稱圖形,錯誤;C.是中心對稱圖形不是軸對稱圖形,錯誤;D.是軸對稱圖形也是中心對稱圖形,錯誤,故選A.【點睛】本題考查軸對稱圖形與中心對稱圖形,正確地識別是解題的關(guān)鍵.9、D【解析】
①利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,n=400,數(shù)值較小,不能近似的看為概率,①錯誤;②利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,可得②正確;③用4000乘以綠豆發(fā)芽的的概率即可求得綠豆發(fā)芽的粒數(shù),③正確.【詳解】①當(dāng)n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率大約是0.955,此推斷錯誤;②根據(jù)上表當(dāng)每批粒數(shù)足夠大時,頻率逐漸接近于0.950,所以估計綠豆發(fā)芽的概率是0.95,此推斷正確;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為4000×0.950=3800粒,此結(jié)論正確.故選D.【點睛】本題考查利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.10、D【解析】試題分析:過C作CD∥直線m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,則∠a的余角是52°.故選D.考點:平行線的性質(zhì);余角和補角.11、B【解析】試題分析:根據(jù)平行四邊形的性質(zhì)可知AB=CD,AD∥BC,AD=BC,然后根據(jù)平行線的性質(zhì)和角平分線的性質(zhì)可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故選B.點睛:此題主要考查了平行四邊形的性質(zhì)和等腰三角形的性質(zhì),解題關(guān)鍵是把所求線段轉(zhuǎn)化為題目中已知的線段,根據(jù)等量代換可求解.12、A【解析】
根據(jù)平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應(yīng)用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【點睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(14+2)米【解析】
過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出DE,再根據(jù)勾股定理求出CE,然后根據(jù)同時同地物高與影長成正比列式求出EF,再求出BF,再次利用同時同地物高與影長成正比列式求解即可.【詳解】如圖,過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據(jù)勾股定理得:CE===4.∵1m桿的影長為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【點睛】本題考查了相似三角形的應(yīng)用,主要利用了同時同地物高與影長成正比的性質(zhì),作輔助線求出AB的影長若全在水平地面上的長BF是解題的關(guān)鍵.14、3【解析】如圖,連接BB′,∵△ABC繞點A順時針方向旋轉(zhuǎn)60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點睛:本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關(guān)鍵,也是本題的難點.15、①②④.【解析】①△ODB與△OCA的面積相等;正確,由于A、B在同一反比例函數(shù)圖象上,則兩三角形面積相等,都為12②四邊形PAOB的面積不會發(fā)生變化;正確,由于矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發(fā)生變化.③PA與PB始終相等;錯誤,不一定,只有當(dāng)四邊形OCPD為正方形時滿足PA=PB.④當(dāng)點A是PC的中點時,點B一定是PD的中點.正確,當(dāng)點A是PC的中點時,k=2,則此時點B也一定是PD的中點.故一定正確的是①②④16、20【解析】
先設(shè)出白球的個數(shù),根據(jù)白球的頻率求出白球的個數(shù),再用總的個數(shù)減去白球的個數(shù)即可.【詳解】設(shè)黃球的個數(shù)為x個,∵共有黃色、白色的乒乓球50個,黃球的頻率穩(wěn)定在60%,∴=60%,解得x=30,∴布袋中白色球的個數(shù)很可能是50-30=20(個).故答案為:20.【點睛】本題考查了利用頻率估計概率,熟練掌握該知識點是本題解題的關(guān)鍵.17、【解析】
首先根據(jù)切線的性質(zhì)及圓周角定理得CE的長以及圓周角度數(shù),進而利用銳角三角函數(shù)關(guān)系得出DE,AD的長,利用S△ADE﹣S扇形FOE=圖中陰影部分的面積求出即可.【詳解】解:連接OE,OF、EF,∵DE是切線,∴OE⊥DE,∵∠C=30°,OB=OE=2,∴∠EOC=60°,OC=2OE=4,∴CE=OC×sin60°=∵點E是弧BF的中點,∴∠EAB=∠DAE=30°,∴F,E是半圓弧的三等分點,∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=∴DE=,∴AD=DE×tan60°=∴S△ADE∵△FOE和△AEF同底等高,∴△FOE和△AEF面積相等,∴圖中陰影部分的面積為:S△ADE﹣S扇形FOE故答案為【點睛】此題主要考查了扇形的面積計算以及三角形面積求法等知識,根據(jù)已知得出△FOE和△AEF面積相等是解題關(guān)鍵.18、【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴∴∴∵PD⊥OA,點M是OP的中點,∴故答案為:【點睛】此題考查了等腰三角形的性質(zhì)與判定、含30°直角三角形的性質(zhì)以及直角三角形斜邊的中線的性質(zhì).此題難度適中,屬于中考常見題型,求出OP的長是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)BC=BD+CE,(2);(3).【解析】
(1)證明△ADB≌△EAC,根據(jù)全等三角形的性質(zhì)得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數(shù)量關(guān)系;(2)過D作DE⊥AB,交BA的延長線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根據(jù)勾股定理即可得到BD的長;(3)過D作DE⊥BC于E,作DF⊥AB于F,證明△CED≌△AFD,根據(jù)全等三角形的性質(zhì)得到CE=AF,ED=DF,設(shè)AF=x,DF=y,根據(jù)CB=4,AB=2,列出方程組,求出的值,根據(jù)勾股定理即可求出BD的長.【詳解】解:(1)觀察猜想結(jié)論:BC=BD+CE,理由是:如圖①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)問題解決如圖②,過D作DE⊥AB,交BA的延長線于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓展延伸如圖③,過D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,設(shè)AF=x,DF=y,則,解得:∴BF=2+1=3,DF=3,由勾股定理得:【點睛】考查全等三角形的判定與性質(zhì),勾股定理,二元一次方程組的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.20、1.【解析】
直接利用絕對值的性質(zhì)以及零指數(shù)冪的性質(zhì)和負指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=1.【點睛】本題考查了實數(shù)的運算,零指數(shù)冪,負整數(shù)指數(shù)冪,解題的關(guān)鍵是掌握冪的運算法則.21、(1)圓的半徑為4.5;(2)EF=.【解析】
(1)連接OD,根據(jù)垂徑定理得:DH=2,設(shè)圓O的半徑為r,根據(jù)勾股定理列方程可得結(jié)論;(2)過O作OG⊥AE于G,證明△AGO∽△AHF,列比例式可得AF的長,從而得EF的長.【詳解】(1)連接OD,∵直徑AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,設(shè)圓O的半徑為r,根據(jù)勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,則圓的半徑為4.5;(2)過O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【點睛】本題考查了垂徑定理,勾股定理,相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是正確添加輔助線并熟練掌握垂徑定理和相似三角形的判定與性質(zhì).22、(1)a=﹣;(2)﹣1<n<2;(3)滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.【解析】試題分析:(1)、根據(jù)題意求出點C的坐標(biāo),然后將點C和點B的坐標(biāo)代入直線解析式求出a和b的值;(2)、根據(jù)題意可知點Q在點A和點B之間,從而求出n的取值范圍;(3)、本題需要分幾種情況分別來進行計算,即AC=P1C,P2A=P2C和AP3=AC三種情況分別進行計算得出t的值.試題解析:(1)、解:∵點C是直線l1:y=x+1與軸的交點,∴C(0,1),∵點C在直線l2上,∴b=1,∴直線l2的解析式為y=ax+1,∵點B在直線l2上,∴2a+1=0,∴a=﹣;(2)、解:由(1)知,l1的解析式為y=x+1,令y=0,∴x=﹣1,由圖象知,點Q在點A,B之間,∴﹣1<n<2(3)、解:如圖,∵△PAC是等腰三角形,∴①點x軸正半軸上時,當(dāng)AC=P1C時,∵CO⊥x軸,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②當(dāng)P2A=P2C時,易知點P2與O重合,∴BP2=OB=2,∴2÷1=2s,③點P在x軸負半軸時,AP3=AC,∵A(﹣1,0),C(0,1),∴AC=,∴AP3=,∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣)s,即:滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.點睛:本題主要考查的就是一次函數(shù)的性質(zhì)、等腰三角形的性質(zhì)和動點問題,解決這個問題的關(guān)鍵就是要能夠根據(jù)題意進行分類討論,從而得出答案.在解決一次函數(shù)和等腰三角形問題時,我們一定要根據(jù)等腰三角形的性質(zhì)來進行分類討論,可以利用圓規(guī)來作出圖形,然后根據(jù)實際題目來求出答案.23、8+23【解析】試題分析:利用負整數(shù)指數(shù)冪,零指數(shù)冪、絕對值、特殊角的三角函數(shù)值的定義解答.試題解析:原式=9+1-(2-3)+2×3考點:1.實數(shù)的運算;2.零指數(shù)冪;3.負整數(shù)指數(shù)冪;4.特殊角的三角函數(shù)值.24、(1)證明見解析;(2);(3)1.【解析】
(1)連接OM,如圖1,先證明OM∥BC,再根據(jù)等腰三角形的性質(zhì)判斷AE⊥BC,則OM⊥AE,然后根據(jù)切線的判定定理得到AE為⊙O的切線;(2)設(shè)⊙O的半徑為r,利用等腰三角形的性質(zhì)得到BE=CE=BC=2,再證明△AOM∽△ABE,則利用相似比得到,然后解關(guān)于r的方程即可;(3)作OH⊥BE于H,如圖,易得四邊形OHEM為矩形,則HE=OM=,所以BH=BE-HE=,再根據(jù)垂徑定理得到BH=HG=,所以BG=1.【詳解】解:(1)證明:連接OM,如圖1,∵BM是∠ABC的平分線,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分線,∴AE⊥BC,∴OM⊥AE,∴AE為⊙O的切線;(2)解:設(shè)⊙O的半徑為r,∵AB=AC=6,AE是∠BAC的平分線,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴,即,解得r=,即設(shè)⊙O的半徑為;(3)解:作OH⊥BE于H,如圖,∵OM⊥EM,ME⊥BE,∴四邊形OHEM為矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.25、(1)、(2)見解析(3)【解析】試題分析:(1)根據(jù)點的平面直角坐標(biāo)系中點的位置寫出點的坐標(biāo);(2)根據(jù)旋轉(zhuǎn)圖形的性質(zhì)畫出旋轉(zhuǎn)后的圖形;(3)點A所經(jīng)過的路程是以點C為圓心,AC長為半徑的扇形的弧長.試題解析:(1)A(0,4)C(3,1)(2)如圖所示:(3)根據(jù)勾股定理可得:AC=3,則.考點:圖形的旋轉(zhuǎn)、扇形的弧長計算公式.26、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當(dāng)60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當(dāng)60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結(jié)論;第②種情況:當(dāng)0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年寵物營養(yǎng)師職涯發(fā)展的新路徑試題及答案
- 藥理學(xué)新的科研趨勢試題及答案
- 食品質(zhì)檢員考試中的法規(guī)知識試題及答案
- 美容師考試常見錯誤及糾正方法試題及答案
- 2024年美容師考試適應(yīng)性學(xué)習(xí)與答案
- 2024年汽車維修工考試的職業(yè)發(fā)展
- 汽車美容師在職培訓(xùn)與發(fā)展調(diào)查試題及答案
- 湖南省長沙市一中2025屆高三下學(xué)期適應(yīng)性檢測(一)語文試題 含解析
- 網(wǎng)絡(luò)編程中的常用技術(shù)試題及答案
- 2025年小學(xué)語文考試的各類試題與答案
- 雷電的預(yù)防和應(yīng)對
- 初中語文中考復(fù)習(xí) 21 出師表(原卷版)-2023年中考語文文言文必考篇目之對比閱讀(通用版)
- 侵害作品信息網(wǎng)絡(luò)傳播權(quán)糾紛民事答辯狀
- 5S點檢表1(日檢查表)
- 庫爾勒經(jīng)濟技術(shù)開發(fā)區(qū)總體規(guī)劃環(huán)境影響報告書簡本
- 03+主題閱讀:信息時代的媒介素養(yǎng)2-備戰(zhàn)2022高考作文素材積累與寫法總結(jié)
- 新版北師大版小學(xué)3三年級數(shù)學(xué)下冊全冊教案完整(新教材)
- ABAQUS粘聚力模型(CohesiveModel)應(yīng)用小結(jié)
- 房屋建筑和市政基礎(chǔ)設(shè)施項目基本情況承諾(樣表)
- 智慧冷鏈產(chǎn)業(yè)園整體解決方案
- 供應(yīng)商產(chǎn)品及過程變更控制程序
評論
0/150
提交評論