




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年上海市長(zhǎng)寧區(qū)名校中考數(shù)學(xué)五模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.被譽(yù)為“中國(guó)天眼”的世界上最大的單口徑球面射電望遠(yuǎn)鏡FAST的反射面總面積約為250000m2,則250000用科學(xué)記數(shù)法表示為()A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m22.把一枚六個(gè)面編號(hào)分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個(gè)正面朝上的編號(hào)分別為m,n,則二次函數(shù)y=xA.512B.49C.173.已知反比例函數(shù),下列結(jié)論不正確的是()A.圖象經(jīng)過(guò)點(diǎn)(﹣2,1) B.圖象在第二、四象限C.當(dāng)x<0時(shí),y隨著x的增大而增大 D.當(dāng)x>﹣1時(shí),y>24.已知點(diǎn),與點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)是()A. B. C. D.5.在一些美術(shù)字中,有的漢字是軸對(duì)稱圖形.下面4個(gè)漢字中,可以看作是軸對(duì)稱圖形的是()A. B. C. D.6.如圖,在中,,以邊的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是邊和半圓上的動(dòng)點(diǎn),連接,則長(zhǎng)的最大值與最小值的和是()A. B. C. D.7.已知一組數(shù)據(jù)a,b,c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a﹣2,b﹣2,c﹣2的平均數(shù)和方差分別是.()A.3,2 B.3,4 C.5,2 D.5,48.如圖,正方形ABCD的邊長(zhǎng)是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是(
)A.1 B.2 C.3 D.49.計(jì)算(﹣)﹣1的結(jié)果是()A.﹣ B. C.2 D.﹣210.如圖,△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為()A.2.3 B.2.4 C.2.5 D.2.611.如圖,在△ABC中,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),AC=3,cosA=,將△DAC沿著CD折疊后,點(diǎn)A落在點(diǎn)E處,則BE的長(zhǎng)為()A.5 B.4 C.7 D.512.如圖,左、右并排的兩棵樹(shù)AB和CD,小樹(shù)的高AB=6m,大樹(shù)的高CD=9m,小明估計(jì)自己眼睛距地面EF=1.5m,當(dāng)他站在F點(diǎn)時(shí)恰好看到大樹(shù)頂端C點(diǎn).已知此時(shí)他與小樹(shù)的距離BF=2m,則兩棵樹(shù)之間的距離BD是()A.1m B.m C.3m D.m二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知x1,x2是方程x2+6x+3=0的兩實(shí)數(shù)根,則的值為_(kāi)____.14.分解因式:9x3﹣18x2+9x=.15.對(duì)于任意實(shí)數(shù)a、b,定義一種運(yùn)算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請(qǐng)根據(jù)上述的定義解決問(wèn)題:若不等式3※x<1,則不等式的正整數(shù)解是_____.16.分解因式:x2y﹣xy2=_____.17.若正多邊形的一個(gè)內(nèi)角等于120°,則這個(gè)正多邊形的邊數(shù)是_____.18.如圖,圓錐底面圓心為O,半徑OA=1,頂點(diǎn)為P,將圓錐置于平面上,若保持頂點(diǎn)P位置不變,將圓錐順時(shí)針滾動(dòng)三周后點(diǎn)A恰好回到原處,則圓錐的高OP=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CD到E,使DE=CD,連接AE.(1)求證:四邊形ABDE是平行四邊形;(2)連接OE,若∠ABC=60°,且AD=DE=4,求OE的長(zhǎng).20.(6分)如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長(zhǎng).21.(6分)在第23個(gè)世界讀書(shū)日前夕,我市某中學(xué)為了解本校學(xué)生的每周課外閱讀時(shí)間用t表示,單位:小時(shí),采用隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查,調(diào)查結(jié)果按,,,分為四個(gè)等級(jí),并依次用A,B,C,D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)的數(shù)據(jù),繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中給出的信息解答下列問(wèn)題:求本次調(diào)查的學(xué)生人數(shù);求扇形統(tǒng)計(jì)圖中等級(jí)B所在扇形的圓心角度數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;若該校共有學(xué)生1200人,試估計(jì)每周課外閱讀時(shí)間滿足的人數(shù).22.(8分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點(diǎn)E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).23.(8分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點(diǎn),ED的延長(zhǎng)線與CB的延長(zhǎng)線相交于點(diǎn)F.(1)求證:DF是BF和CF的比例中項(xiàng);(2)在AB上取一點(diǎn)G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.24.(10分)如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、點(diǎn)B、點(diǎn)C均落在格點(diǎn)上.(I)計(jì)算△ABC的邊AC的長(zhǎng)為_(kāi)____.(II)點(diǎn)P、Q分別為邊AB、AC上的動(dòng)點(diǎn),連接PQ、QB.當(dāng)PQ+QB取得最小值時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出線段PQ、QB,并簡(jiǎn)要說(shuō)明點(diǎn)P、Q的位置是如何找到的_____(不要求證明).25.(10分)如圖1,正方形ABCD的邊長(zhǎng)為8,動(dòng)點(diǎn)E從點(diǎn)D出發(fā),在線段DC上運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā),以相同的速度沿射線AB方向運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到終點(diǎn)C時(shí),點(diǎn)F也停止運(yùn)動(dòng),連接AE交對(duì)角線BD于點(diǎn)N,連接EF交BC于點(diǎn)M,連接AM.(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=2﹣)(1)在點(diǎn)E、F運(yùn)動(dòng)過(guò)程中,判斷EF與BD的位置關(guān)系,并說(shuō)明理由;(2)在點(diǎn)E、F運(yùn)動(dòng)過(guò)程中,①判斷AE與AM的數(shù)量關(guān)系,并說(shuō)明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長(zhǎng)度;若不能,請(qǐng)說(shuō)明理由;(3)如圖2,連接NF,在點(diǎn)E、F運(yùn)動(dòng)過(guò)程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請(qǐng)說(shuō)明理由.26.(12分)某市舉行“傳承好家風(fēng)”征文比賽,已知每篇參賽征文成績(jī)記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了它們的成績(jī),并繪制了如圖不完整的兩幅統(tǒng)計(jì)圖表.征文比賽成績(jī)頻數(shù)分布表分?jǐn)?shù)段頻數(shù)頻率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合計(jì)1請(qǐng)根據(jù)以上信息,解決下列問(wèn)題:(1)征文比賽成績(jī)頻數(shù)分布表中c的值是;(2)補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖;(3)若80分以上(含80分)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).27.(12分)計(jì)算:×(2﹣)﹣÷+.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù).【詳解】解:由科學(xué)記數(shù)法可知:250000m2=2.5×105m2,故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法表示較大的數(shù)的方法,準(zhǔn)確確定a與n值是關(guān)鍵.2、C【解析】分析:本題可先列出出現(xiàn)的點(diǎn)數(shù)的情況,因?yàn)槎螆D象開(kāi)口向上,要使圖象與x軸有兩個(gè)不同的交點(diǎn),則最低點(diǎn)要小于0,即4n-m2<0,再把m、n的值一一代入檢驗(yàn),看是否滿足.最后把滿足的個(gè)數(shù)除以擲骰子可能出現(xiàn)的點(diǎn)數(shù)的總個(gè)數(shù)即可.解答:解:擲骰子有6×6=36種情況.根據(jù)題意有:4n-m2<0,因此滿足的點(diǎn)有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點(diǎn)評(píng):本題考查的是概率的公式和二次函數(shù)的圖象問(wèn)題.要注意畫(huà)出圖形再進(jìn)行判斷,找出滿足條件的點(diǎn).3、D【解析】
A選項(xiàng):把(-2,1)代入解析式得:左邊=右邊,故本選項(xiàng)正確;
B選項(xiàng):因?yàn)?2<0,圖象在第二、四象限,故本選項(xiàng)正確;
C選項(xiàng):當(dāng)x<0,且k<0,y隨x的增大而增大,故本選項(xiàng)正確;
D選項(xiàng):當(dāng)x>0時(shí),y<0,故本選項(xiàng)錯(cuò)誤.
故選D.4、C【解析】
根據(jù)關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),可得答案.【詳解】解:點(diǎn),與點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)是,
故選:C.【點(diǎn)睛】本題考查了關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對(duì)稱點(diǎn)的坐標(biāo)規(guī)律:關(guān)于x軸對(duì)稱的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);關(guān)于原點(diǎn)對(duì)稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).5、A【解析】
根據(jù)軸對(duì)稱圖形的概念判斷即可.【詳解】A、是軸對(duì)稱圖形;B、不是軸對(duì)稱圖形;C、不是軸對(duì)稱圖形;D、不是軸對(duì)稱圖形.故選:A.【點(diǎn)睛】本題考查的是軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合.6、C【解析】
如圖,設(shè)⊙O與AC相切于點(diǎn)E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時(shí)垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當(dāng)Q2在AB邊上時(shí),P2與B重合時(shí),P2Q2最大值=5+3=8,由此不難解決問(wèn)題.【詳解】解:如圖,設(shè)⊙O與AC相切于點(diǎn)E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時(shí)垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當(dāng)Q2在AB邊上時(shí),P2與B重合時(shí),P2Q2經(jīng)過(guò)圓心,經(jīng)過(guò)圓心的弦最長(zhǎng),P2Q2最大值=5+3=8,∴PQ長(zhǎng)的最大值與最小值的和是1.故選:C.【點(diǎn)睛】本題考查切線的性質(zhì)、三角形中位線定理等知識(shí),解題的關(guān)鍵是正確找到點(diǎn)PQ取得最大值、最小值時(shí)的位置,屬于中考常考題型.7、B【解析】試題分析:平均數(shù)為(a?2+b?2+c?2)=(3×5-6)=3;原來(lái)的方差:;新的方差:,故選B.考點(diǎn):平均數(shù);方差.8、C【解析】∵四邊形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE?OP;故②錯(cuò)誤;在△CQF與△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF與△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正確,故選C.點(diǎn)睛:本題考查了相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),三角函數(shù)的定義,熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.9、D【解析】
根據(jù)負(fù)整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù),可得答案.【詳解】解:,
故選D.【點(diǎn)睛】本題考查了負(fù)整數(shù)指數(shù)冪,負(fù)整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù).10、B【解析】試題分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如圖:設(shè)切點(diǎn)為D,連接CD,∵AB是⊙C的切線,∴CD⊥AB,∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,∴⊙C的半徑為,故選B.考點(diǎn):圓的切線的性質(zhì);勾股定理.11、C【解析】
連接AE,根據(jù)余弦的定義求出AB,根據(jù)勾股定理求出BC,根據(jù)直角三角形的性質(zhì)求出CD,根據(jù)面積公式出去AE,根據(jù)翻轉(zhuǎn)變換的性質(zhì)求出AF,根據(jù)勾股定理、三角形中位線定理計(jì)算即可.【詳解】解:連接AE,∵AC=3,cos∠CAB=,∴AB=3AC=9,由勾股定理得,BC==6,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),∴CD=AB=,S△ABC=×3×6=9,∵點(diǎn)D為AB的中點(diǎn),∴S△ACD=S△ABC=,由翻轉(zhuǎn)變換的性質(zhì)可知,S四邊形ACED=9,AE⊥CD,則×CD×AE=9,解得,AE=4,∴AF=2,由勾股定理得,DF==,∵AF=FE,AD=DB,∴BE=2DF=7,故選C.【點(diǎn)睛】本題考查的是翻轉(zhuǎn)變換的性質(zhì)、直角三角形的性質(zhì),翻轉(zhuǎn)變換是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.12、B【解析】
由∠AGE=∠CHE=90°,∠AEG=∠CEH可證明△AEG∽△CEH,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出GH的長(zhǎng)即BD的長(zhǎng)即可.【詳解】由題意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,則BD=GH=m,故選:B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實(shí)際問(wèn)題中抽象出相似三角形.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1.【解析】試題分析:∵,是方程的兩實(shí)數(shù)根,∴由韋達(dá)定理,知,,∴===1,即的值是1.故答案為1.考點(diǎn):根與系數(shù)的關(guān)系.14、9x【解析】試題分析:首先提取公因式9x,然后利用完全平方公式進(jìn)行因式分解.原式=9x(-2x+1)=9x.考點(diǎn):因式分解15、2【解析】【分析】根據(jù)新定義可得出關(guān)于x的一元一次不等式,解之取其中的正整數(shù)即可得出結(jié)論.【詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數(shù),∴x=2,故答案為:2.【點(diǎn)睛】本題考查一元一次不等式的整數(shù)解以及實(shí)數(shù)的運(yùn)算,通過(guò)解不等式找出x<是解題的關(guān)鍵.16、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).17、6【解析】試題分析:設(shè)所求正n邊形邊數(shù)為n,則120°n=(n﹣2)?180°,解得n=6;考點(diǎn):多邊形內(nèi)角與外角.18、2【解析】
先利用圓的周長(zhǎng)公式計(jì)算出PA的長(zhǎng),然后利用勾股定理計(jì)算PO的長(zhǎng).【詳解】解:根據(jù)題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)見(jiàn)解析;(2)2.【解析】
(1)四邊形ABCD是平行四邊形,由平行四邊形的性質(zhì),可得AB=DE,AB//DE,則四邊形ABDE是平行四邊形;(2)因?yàn)锳D=DE=1,則AD=AB=1,四邊形ABCD是菱形,由菱形的性質(zhì)及解直角三角形可得AO=AB?sin∠ABO=2,BO=AB?cos∠ABO=2,BD=1,則AE=BD,利用勾股定理可得OE.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四邊形ABDE是平行四邊形;(2)∵AD=DE=1,∴AD=AB=1.∴?ABCD是菱形,∴AB=BC,AC⊥BD,,.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,,.∴.∵四邊形ABDE是平行四邊形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【點(diǎn)睛】此題考查平行四邊形的性質(zhì)及判斷,考查菱形的判斷及性質(zhì),及解直角三角形,解題關(guān)鍵在于掌握判定定理和利用三角函數(shù)進(jìn)行計(jì)算.20、(1)(2)證明見(jiàn)解析;(3)1.【解析】
(1)由PD切⊙O于點(diǎn)C,AD與過(guò)點(diǎn)C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=∠PCB,結(jié)合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質(zhì)可得到,又因?yàn)閠an∠ABC=,所以可得=,進(jìn)而可得到=,設(shè)PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進(jìn)而可建立關(guān)于k的方程,解方程求出k的值即可求出PC的長(zhǎng).【詳解】(1)證明:∵PD切⊙O于點(diǎn)C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)證明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB為⊙O的直徑,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,設(shè)PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合題意,舍去).∴PC=4k=4×6=1.【點(diǎn)睛】此題考查了和圓有關(guān)的綜合性題目,用到的知識(shí)點(diǎn)有:切線的性質(zhì)、相似三角形的判定與性質(zhì)、垂徑定理、圓周角定理、勾股定理以及等腰三角形的判定與性質(zhì).21、本次調(diào)查的學(xué)生人數(shù)為200人;B所在扇形的圓心角為,補(bǔ)全條形圖見(jiàn)解析;全校每周課外閱讀時(shí)間滿足的約有360人.【解析】【分析】根據(jù)等級(jí)A的人數(shù)及所占百分比即可得出調(diào)查學(xué)生人數(shù);先計(jì)算出C在扇形圖中的百分比,用在扇形圖中的百分比可計(jì)算出B在扇形圖中的百分比,再計(jì)算出B在扇形的圓心角;總?cè)藬?shù)課外閱讀時(shí)間滿足的百分比即得所求.【詳解】由條形圖知,A級(jí)的人數(shù)為20人,由扇形圖知:A級(jí)人數(shù)占總調(diào)查人數(shù)的,所以:人,即本次調(diào)查的學(xué)生人數(shù)為200人;由條形圖知:C級(jí)的人數(shù)為60人,所以C級(jí)所占的百分比為:,B級(jí)所占的百分比為:,B級(jí)的人數(shù)為人,D級(jí)的人數(shù)為:人,B所在扇形的圓心角為:,補(bǔ)全條形圖如圖所示:;因?yàn)镃級(jí)所占的百分比為,所以全校每周課外閱讀時(shí)間滿足的人數(shù)為:人,答:全校每周課外閱讀時(shí)間滿足的約有360人.【點(diǎn)睛】本題考查了扇形圖和條形圖的相關(guān)知識(shí),從統(tǒng)計(jì)圖中找到必要的信息進(jìn)行解題是關(guān)鍵.扇形圖中某項(xiàng)的百分比,扇形圖中某項(xiàng)圓心角的度數(shù)該項(xiàng)在扇形圖中的百分比.22、(1)見(jiàn)解析;(2)40°.【解析】
(1)根據(jù)角平分線的性質(zhì)可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進(jìn)而可得出∠EDC=∠ECD,再利用等角對(duì)等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進(jìn)而可得出∠ACB=2∠ECD=70°,再根據(jù)等腰三角形的性質(zhì)結(jié)合三角形內(nèi)角和定理即可求出∠A的度數(shù).【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【點(diǎn)睛】本題考查了等腰三角形的判定與性質(zhì)、平行線的性質(zhì)以及角平分線.解題的關(guān)鍵是:(1)根據(jù)平行線的性質(zhì)結(jié)合角平分線的性質(zhì)找出∠EDC=∠ECD;(2)利用角平分線的性質(zhì)結(jié)合等腰三角形的性質(zhì)求出∠ACB=∠ABC=70°.23、證明見(jiàn)解析【解析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進(jìn)行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問(wèn)題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點(diǎn),∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.24、作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最小【解析】
(1)利用勾股定理計(jì)算即可;(2)作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最?。驹斀狻拷猓海?)AC==.故答案為.(2)作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最?。?/p>
故答案為作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最?。军c(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì),勾股定理,軸對(duì)稱-最短問(wèn)題,垂線段最短等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱,根據(jù)垂線段最短解決最短問(wèn)題,屬于中考常考題型.25、(1)EF∥BD,見(jiàn)解析;(2)①AE=AM,理由見(jiàn)解析;②△AEM能為等邊三角形,理由見(jiàn)解析;(3)△ANF的面積不變,理由見(jiàn)解析【解析】
(1)依據(jù)DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進(jìn)而得出EF∥DB;(2)依據(jù)已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據(jù)△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當(dāng)DE=16?8時(shí),△
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 交通運(yùn)輸安全保障工作計(jì)劃總結(jié)
- 電廠技術(shù)年終工作總結(jié)4篇
- 萬(wàn)豪店鋪轉(zhuǎn)讓合同范例
- 幼兒園學(xué)期計(jì)劃星星之火燎原之勢(shì)
- 社團(tuán)工作計(jì)劃活動(dòng)心得
- 公司搬家合同標(biāo)準(zhǔn)文本詳細(xì)
- 業(yè)務(wù)渠道轉(zhuǎn)讓合同標(biāo)準(zhǔn)文本
- 萬(wàn)科景觀合同標(biāo)準(zhǔn)文本
- 臨建活動(dòng)板房合同范例
- 2025化學(xué)品汽油運(yùn)輸合同(合同版本)
- 《 大學(xué)生軍事理論教程》全套教學(xué)課件
- 中考數(shù)學(xué)計(jì)算題練習(xí)100道(2024年中考真題)
- 公司組織架構(gòu)圖(可編輯模版)
- 工程監(jiān)理部人員分工與職責(zé)
- 課程設(shè)計(jì) CA6140撥叉說(shuō)明書(shū)
- 成語(yǔ)故事杞人憂天PPT教案
- 部編版三年級(jí)上冊(cè)音樂(lè)知識(shí)點(diǎn)匯總
- 生命體征的測(cè)量PPT幻燈片課件
- 吉林省吉林市高考報(bào)名登記表
- 質(zhì)量保證體系結(jié)構(gòu)圖(共3頁(yè))
- 天然氣長(zhǎng)輸管道的腐蝕與防護(hù)措施
評(píng)論
0/150
提交評(píng)論