




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省唐山市灤縣重點名校2024屆中考數(shù)學適應性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一個幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體2.下列圖形中是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.3.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間4.如圖,直線y=3x+6與x,y軸分別交于點A,B,以OB為底邊在y軸右側作等腰△OBC,將點C向左平移5個單位,使其對應點C′恰好落在直線AB上,則點C的坐標為()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)5.如圖,是反比例函數(shù)圖象,陰影部分表示它與橫縱坐標軸正半軸圍成的區(qū)域,在該區(qū)域內不包括邊界的整數(shù)點個數(shù)是k,則拋物線向上平移k個單位后形成的圖象是A. B.C. D.6.施工隊要鋪設1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務.設原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=27.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角8.一、單選題小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.9.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°10.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個圓錐的側面,則這個圓錐的高為()cm.A. B. C. D.11.的算術平方根為()A. B. C. D.12.△ABC在網(wǎng)絡中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,AB=5,AC=4,BC=3,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB、AC于點M、N;②分別以點M、N為圓心,以大于的長為半徑作弧,兩弧相交于點E;③作射線AE;④以同樣的方法作射線BF,AE交BF于點O,連接OC,則OC=________.14.拋物線y=2x2+4x﹣2的頂點坐標是_______________.15.甲、乙、丙3名學生隨機排成一排拍照,其中甲排在中間的概率是_____.16.已知關于x,y的二元一次方程組的解互為相反數(shù),則k的值是_________.17.在△ABC中,∠C=90°,sinA=,BC=4,則AB值是_____.18.若式子有意義,則x的取值范圍是_____________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知一個二次函數(shù)的圖象經過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點,求這個函數(shù)解析式以及點C的坐標.20.(6分)如圖,平面直角坐標系中,將含30°的三角尺的直角頂點C落在第二象限.其斜邊兩端點A、B分別落在x軸、y軸上且AB=12cm(1)若OB=6cm.①求點C的坐標;②若點A向右滑動的距離與點B向上滑動的距離相等,求滑動的距離;(2)點C與點O的距離的最大值是多少cm.21.(6分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線;(2)當BC=4,AC=6時,求⊙O的半徑;(3)在(2)的條件下,求線段BG的長.22.(8分)解方程(1)x1﹣1x﹣1=0(1)(x+1)1=4(x﹣1)1.23.(8分)太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC=4米,將標桿CD向后平移到點C處,這時地面上的點F,標桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米.請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB.24.(10分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯(lián)結EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求25.(10分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.26.(12分)先化簡,再求值:(x﹣2﹣)÷,其中x=.27.(12分)先化簡,再求值:,其中x滿足x2-2x-2=0.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結構特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關鍵.2、C【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解.詳解:A、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項正確;D、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤.故選:C.點睛:本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.3、A【解析】
直接利用已知無理數(shù)得出的取值范圍,進而得出答案.【詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【點睛】此題主要考查了估算無理數(shù)大小,正確得出的取值范圍是解題關鍵.4、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴點C在線段OB的垂直平分線上,∴設C(a,3),則C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故選B.點睛:掌握等腰三角形的性質、函數(shù)圖像的平移.5、A【解析】
依據(jù)反比例函數(shù)的圖象與性質,即可得到整數(shù)點個數(shù)是5個,進而得到拋物線向上平移5個單位后形成的圖象.【詳解】解:如圖,反比例函數(shù)圖象與坐標軸圍成的區(qū)域內不包括邊界的整數(shù)點個數(shù)是5個,即,
拋物線向上平移5個單位后可得:,即,
形成的圖象是A選項.
故選A.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征、反比例函數(shù)的圖象、二次函數(shù)的性質與圖象,解答本題的關鍵是明確題意,求出相應的k的值,利用二次函數(shù)圖象的平移規(guī)律進行解答.6、A【解析】分析:設原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù):原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設原計劃每天施工x米,則實際每天施工(x+30)米,根據(jù)題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關鍵是讀懂題意,找出合適的等量關系,列出方程.7、B【解析】
利用對頂角的性質、平方根的性質、銳角和鈍角的定義分別判斷后即可確定正確的選項.【詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【點睛】考查了命題與定理的知識,解題的關鍵是了解對頂角的性質、平方根的性質、銳角和鈍角的定義,難度不大.8、C【解析】
解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據(jù)關系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應用題,找準題目中的等量關系,難度不大.9、C【解析】
如圖,根據(jù)長方形的性質得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質等,準確識圖是解題的關鍵.10、B【解析】分析:直接利用圓錐的性質求出圓錐的半徑,進而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線長為:24cm,設圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個圓錐的高為:(cm).故選B.點睛:此題主要考查了圓錐的計算,正確得出圓錐的半徑是解題關鍵.11、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術平方根即可.詳解:∵=2,而2的算術平方根是,∴的算術平方根是,故選B.點睛:此題主要考查了算術平方根的定義,解題時應先明確是求哪個數(shù)的算術平方根,否則容易出現(xiàn)選A的錯誤.12、B【解析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】
直接利用勾股定理的逆定理結合三角形內心的性質進而得出答案.【詳解】過點O作OD⊥BC,OG⊥AC,垂足分別為D,G,由題意可得:O是△ACB的內心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四邊形OGCD是正方形,∴DO=OG==1,∴CO=.故答案為.【點睛】此題主要考查了基本作圖以及三角形的內心,正確得出OD的長是解題關鍵.14、(﹣1,﹣1)【解析】
利用頂點的公式首先求得橫坐標,然后把橫坐標的值代入解析式即可求得縱坐標.【詳解】x=-=-1,把x=-1代入得:y=2-1-2=-1.則頂點的坐標是(-1,-1).故答案是:(-1,-1).【點睛】本題考查了二次函數(shù)的頂點坐標的求解方法,可以利用配方法求解,也可以利用公式法求解.15、【解析】列舉出所有情況,看甲排在中間的情況占所有情況的多少即為所求的概率.
根據(jù)題意,列出甲、乙、丙三個同學排成一排拍照的所有可能:
甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6種情況,
只有2種甲在中間,所以甲排在中間的概率是=.
故答案為;點睛:本題主要考查了列舉法求概率,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比,關鍵是列舉出同等可能的所有情況.16、-1【解析】
∵關于x,y的二元一次方程組的解互為相反數(shù),∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案為-117、6【解析】
根據(jù)正弦函數(shù)的定義得出sinA=,即,即可得出AB的值.【詳解】∵sinA=,即,∴AB=1,故答案為1.【點睛】本題考查了解直角三角形,熟練掌握正弦函數(shù)的定義是解題的關鍵.18、x<【解析】由題意得:1﹣2x>0,解得:,故答案為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、y=2x2+x﹣3,C點坐標為(﹣,0)或(2,7)【解析】
設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,進而求出點C的坐標即可.【詳解】設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴拋物線的解析式為y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C點坐標為(﹣,0)或(2,7).【點睛】本題考查了用待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關系式時,要根據(jù)題目給定的條件,選擇恰當?shù)姆椒ㄔO出關系式,從而代入數(shù)值求解.20、(1)①點C的坐標為(-3,9);②滑動的距離為6(﹣1)cm;(2)OC最大值1cm.【解析】試題分析:(1)①過點C作y軸的垂線,垂足為D,根據(jù)30°的直角三角形的性質解答即可;②設點A向右滑動的距離為x,根據(jù)題意得點B向上滑動的距離也為x,根據(jù)銳角三角函數(shù)和勾股定理解答即可;(2)設點C的坐標為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,證得△ACE∽△BCD,利用相似三角形的性質解答即可.試題解析:解:(1)①過點C作y軸的垂線,垂足為D,如圖1:在Rt△AOB中,AB=1,OB=6,則BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以點C的坐標為(﹣3,9);②設點A向右滑動的距離為x,根據(jù)題意得點B向上滑動的距離也為x,如圖2:AO=1×cos∠BAO=1×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=1在△A'OB'中,由勾股定理得,(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),∴滑動的距離為6(﹣1);(2)設點C的坐標為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,如圖3:則OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴當|x|取最大值時,即C到y(tǒng)軸距離最大時,OC2有最大值,即OC取最大值,如圖,即當C'B'旋轉到與y軸垂直時.此時OC=1,故答案為1.考點:相似三角形綜合題.21、(1)證明見解析;(2);(3)1.【解析】
(1)連接OM,如圖1,先證明OM∥BC,再根據(jù)等腰三角形的性質判斷AE⊥BC,則OM⊥AE,然后根據(jù)切線的判定定理得到AE為⊙O的切線;(2)設⊙O的半徑為r,利用等腰三角形的性質得到BE=CE=BC=2,再證明△AOM∽△ABE,則利用相似比得到,然后解關于r的方程即可;(3)作OH⊥BE于H,如圖,易得四邊形OHEM為矩形,則HE=OM=,所以BH=BE-HE=,再根據(jù)垂徑定理得到BH=HG=,所以BG=1.【詳解】解:(1)證明:連接OM,如圖1,∵BM是∠ABC的平分線,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分線,∴AE⊥BC,∴OM⊥AE,∴AE為⊙O的切線;(2)解:設⊙O的半徑為r,∵AB=AC=6,AE是∠BAC的平分線,∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴,即,解得r=,即設⊙O的半徑為;(3)解:作OH⊥BE于H,如圖,∵OM⊥EM,ME⊥BE,∴四邊形OHEM為矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.22、(1)x1=1+,x1=1﹣;(1)x1=3,x1=.【解析】
(1)配方法解;(1)因式分解法解.【詳解】(1)x1﹣1x﹣1=2,x1﹣1x+1=1+1,(x﹣1)1=3,x﹣1=,x=1,x1=1,x1=1﹣,(1)(x+1)1=4(x﹣1)1.(x+1)1﹣4(x﹣1)1=2.(x+1)1﹣[1(x﹣1)]1=2.(x+1)1﹣(1x﹣1)1=2.(x+1﹣1x+1)(x+1+1x﹣1)=2.(﹣x+3)(3x﹣1)=2.x1=3,x1=.【點睛】考查了解一元二次方程的應用,解此題的關鍵是能把一元二次方程轉化成一元一次方程.23、55米【解析】
由題意可知△EDC∽△EBA,△FHC∽△FBA,根據(jù)相似三角形的性質可得,又DC=HG,可得,代入數(shù)據(jù)即可求得AC=106米,再由即可求得AB=55米.【詳解】∵△EDC∽△EBA,△FHC∽△FBA,,,,即,∴AC=106米,又,∴,∴AB=55米.答:舍利塔的高度AB為55米.【點睛】本題考查相似三角形的判定和性質的應用,解題的關鍵是靈活運用所學知識解決問題,利用相似三角形的性質建立方程解決問題.24、(1)證明見解析;(2)EH=【解析】
(1)由題意推出∠EHB=∠OCB,(2)結合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點睛】本題考查的知識點是圓與相似三角形,解題的關鍵是熟練的掌握圓與相似三角形.25、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】
(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質得到,利用等腰三角形的性質得到∠BAC=∠MAN,根據(jù)相似三角形的性質即可得到結論;
(3)如圖3,連接AB,AN,根據(jù)正方形的性質得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質得出,得到BM=2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《收玉米》(教案)2024-2025學年數(shù)學一年級下冊
- 2025年股權投資協(xié)議業(yè)績對賭
- 2025年收購公司合同模板
- 三年級上冊數(shù)學教案-第3單元 長方形和正方形 1 長方形和正方形 第1課時(蘇教版)
- 2025年美發(fā)店合伙經營合同
- 2025年公司銷售員合同模板
- (高清版)DB45∕T 560-2021 甘蔗中耕施肥培土機作業(yè)質量
- Unit 2 An Accident Lesson 2 Let's practice(教學設計)-2024-2025學年北師大版(三起)英語六年級上冊
- 統(tǒng)編版四年級上冊語文第五單元習作 《生活萬花筒》公開課一等獎創(chuàng)新教學設計
- 期中重難點檢測卷(試題)-小學數(shù)學三年級上冊人教版(含解析)
- 2025年廣州市黃埔區(qū)文沖街招聘“村改居”社區(qū)治安聯(lián)防隊員36人歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 國家電網(wǎng)新聞宣傳與企業(yè)文化管理專責考試題及答案
- 2024年江蘇省衛(wèi)生健康委員會所屬事業(yè)單位招聘筆試真題
- 廉潔知識培訓課件
- 小學二年級有余數(shù)的除法口算題(共300題)
- 高職院校高水平現(xiàn)代物流管理專業(yè)群建設方案(現(xiàn)代物流管理專業(yè)群)
- 2024專升本英語答題卡浙江省
- (完整版)50028-城鎮(zhèn)燃氣設計規(guī)范
- 最新工程招投標實訓課程標準教案
- KET核心詞匯中文加音標_完整版
- 五年級下冊英語(閩教版)教學計劃
評論
0/150
提交評論