版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省廣州市三元里中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐2.小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你認(rèn)為其中正確信息的個(gè)數(shù)有A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)3.下列各式正確的是()A. B.C. D.4.如圖的幾何體是由一個(gè)正方體切去一個(gè)小正方體形成的,它的主視圖是()A. B. C. D.5.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數(shù)為()A.34° B.56° C.66° D.54°6.已知點(diǎn)A、B、C是直徑為6cm的⊙O上的點(diǎn),且AB=3cm,AC=3cm,則∠BAC的度數(shù)為()A.15°
B.75°或15°
C.105°或15°
D.75°或105°7.一、單選題在某校“我的中國(guó)夢(mèng)”演講比賽中,有7名學(xué)生參加了決賽,他們決賽的最終成績(jī)各不相同.其中的一名學(xué)生想要知道自己能否進(jìn)入前3名,不僅要了解自己的成績(jī),還要了解這7名學(xué)生成績(jī)的()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差8.如圖是一個(gè)正方體的表面展開圖,如果對(duì)面上所標(biāo)的兩個(gè)數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.9.如圖所示是由幾個(gè)完全相同的小正方體組成的幾何體的三視圖.若小正方體的體積是1,則這個(gè)幾何體的體積為()A.2 B.3 C.4 D.510.的平方根是()A.2 B. C.±2 D.±二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),AC是⊙O的直徑,∠P=40°,則∠BAC=.12.若代數(shù)式的值不小于代數(shù)式的值,則x的取值范圍是_____.13.有兩個(gè)一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四個(gè)結(jié)論中正確的是_____(填寫序號(hào)).①如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)不相等的實(shí)數(shù)根;②如果方程M有兩根符號(hào)相同,那么方程N(yùn)的兩根符號(hào)也相同;③如果方程M和方程N(yùn)有一個(gè)相同的根,那么這個(gè)根必是x=1;④如果5是方程M的一個(gè)根,那么是方程N(yùn)的一個(gè)根.14.?dāng)?shù)學(xué)的美無(wú)處不在.?dāng)?shù)學(xué)家們研究發(fā)現(xiàn),彈撥琴弦發(fā)出聲音的音調(diào)高低,取決于弦的長(zhǎng)度,繃得一樣緊的幾根弦,如果長(zhǎng)度的比能夠表示成整數(shù)的比,發(fā)出的聲音就比較和諧.例如,三根弦長(zhǎng)度之比是15:12:10,把它們繃得一樣緊,用同樣的力彈撥,它們將分別發(fā)出很調(diào)和的樂(lè)聲do、mi、so,研究15、12、10這三個(gè)數(shù)的倒數(shù)發(fā)現(xiàn):.我們稱15、12、10這三個(gè)數(shù)為一組調(diào)和數(shù).現(xiàn)有一組調(diào)和數(shù):x,5,3(x>5),則x的值是.15.若點(diǎn)(,1)與(﹣2,b)關(guān)于原點(diǎn)對(duì)稱,則=_______.16.將拋物線y=(x+m)2向右平移2個(gè)單位后,對(duì)稱軸是y軸,那么m的值是_____.三、解答題(共8題,共72分)17.(8分)解方程:2(x-3)=3x(x-3).18.(8分)如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(﹣4,5),并與y軸交于點(diǎn)C,拋物線的對(duì)稱軸為直線x=﹣1,且拋物線與x軸交于另一點(diǎn)B.(1)求該拋物線的函數(shù)表達(dá)式;(2)若點(diǎn)E是直線下方拋物線上的一個(gè)動(dòng)點(diǎn),求出△ACE面積的最大值;(3)如圖2,若點(diǎn)M是直線x=﹣1的一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.19.(8分)如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過(guò)B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)坐標(biāo)是(8,6).求二次函數(shù)的解析式;求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo);二次函數(shù)的對(duì)稱軸上是否存在一點(diǎn)C,使得△CBD的周長(zhǎng)最???若C點(diǎn)存在,求出C點(diǎn)的坐標(biāo);若C點(diǎn)不存在,請(qǐng)說(shuō)明理由.20.(8分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點(diǎn),BE∶CE=3∶2,連接AE,點(diǎn)P從點(diǎn)A出發(fā),沿射線AB的方向以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),過(guò)點(diǎn)P作PF∥BC交直線AE于點(diǎn)F.(1)線段AE=______;(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),EF的長(zhǎng)度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)當(dāng)t為何值時(shí),以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時(shí)⊙F的半徑.21.(8分)如圖,在圖中求作⊙P,使⊙P滿足以線段MN為弦且圓心P到∠AOB兩邊的距離相等.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆加黑)22.(10分)在某小學(xué)“演講大賽”選拔賽初賽中,甲、乙、丙三位評(píng)委對(duì)小選手的綜合表現(xiàn),分別給出“待定”(用字母W表示)或“通過(guò)”(用字母P表示)的結(jié)論.(1)請(qǐng)用樹狀圖表示出三位評(píng)委給小選手琪琪的所有可能的結(jié)論;(2)對(duì)于小選手琪琪,只有甲、乙兩位評(píng)委給出相同結(jié)論的概率是多少?(3)比賽規(guī)定,三位評(píng)委中至少有兩位給出“通過(guò)”的結(jié)論,則小選手可入圍進(jìn)入復(fù)賽,問(wèn)琪琪進(jìn)入復(fù)賽的概率是多少?23.(12分)已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,連接FD.求證:AB=AF;若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.24.先化簡(jiǎn),再求值,,其中x=1.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:根據(jù)一個(gè)空間幾何體的主視圖和左視圖都是長(zhǎng)方形,可判斷該幾何體是柱體,進(jìn)而根據(jù)俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長(zhǎng)方形,故該幾何體是一個(gè)柱體,又∵俯視圖是一個(gè)三角形,故該幾何體是一個(gè)三棱柱,故選C.點(diǎn)睛:本題考查的知識(shí)點(diǎn)是三視圖,如果有兩個(gè)視圖為三角形,該幾何體一定是錐,如果有兩個(gè)矩形,該幾何體一定柱,其底面由第三個(gè)視圖的形狀決定.2、D【解析】試題分析:①如圖,∵拋物線開口方向向下,∴a<1.∵對(duì)稱軸x,∴<1.∴ab>1.故①正確.②如圖,當(dāng)x=1時(shí),y<1,即a+b+c<1.故②正確.③如圖,當(dāng)x=﹣1時(shí),y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正確.④如圖,當(dāng)x=﹣1時(shí),y>1,即a﹣b+c>1,∵拋物線與y軸交于正半軸,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正確.⑤如圖,對(duì)稱軸,則.故⑤正確.綜上所述,正確的結(jié)論是①②③④⑤,共5個(gè).故選D.3、A【解析】∵,則B錯(cuò);,則C;,則D錯(cuò),故選A.4、D【解析】試題分析:根據(jù)三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個(gè)正方形.5、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點(diǎn):平行線的性質(zhì).6、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點(diǎn)睛:本題考查的是圓周角定理和銳角三角函數(shù)的知識(shí),掌握直徑所對(duì)的圓周角是直徑和熟記特殊角的三角函數(shù)值是解題的關(guān)鍵,注意分情況討論思想的運(yùn)用.7、C【解析】
由于其中一名學(xué)生想要知道自己能否進(jìn)入前3名,共有7名選手參加,故應(yīng)根據(jù)中位數(shù)的意義分析.【詳解】由于總共有7個(gè)人,且他們的成績(jī)各不相同,第4的成績(jī)是中位數(shù),要判斷是否進(jìn)入前3名,故應(yīng)知道中位數(shù)的多少.故選C.【點(diǎn)睛】此題主要考查統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對(duì)統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.8、D【解析】
根據(jù)正方體平面展開圖的特征得出每個(gè)相對(duì)面,再由相對(duì)面上的兩個(gè)數(shù)互為相反數(shù)可得出x的值.【詳解】解:“3”與“-3”相對(duì),“y”與“-2”相對(duì),“x”與“-8”相對(duì),故x=8,故選D.【點(diǎn)睛】本題主要考查了正方體相對(duì)面上的文字,解決本題的關(guān)鍵是要熟練掌握正方體展開圖的特征.9、C【解析】
根據(jù)左視圖發(fā)現(xiàn)最右上角共有2個(gè)小立方體,綜合以上,可以發(fā)現(xiàn)一共有4個(gè)立方體,主視圖和左視圖都是上下兩行,所以這個(gè)幾何體共由上下兩層小正方體組成,俯視圖有3個(gè)小正方形,所以下面一層共有3個(gè)小正方體,結(jié)合主視圖和左視圖的形狀可知上面一層只有最左邊有個(gè)小正方體,故這個(gè)幾何體由4個(gè)小正方體組成,其體積是4.故選C.【點(diǎn)睛】錯(cuò)因分析
容易題,失分原因:未掌握通過(guò)三視圖還原幾何體的方法.10、D【解析】
先化簡(jiǎn),然后再根據(jù)平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點(diǎn)睛】本題考查了平方根的定義以及算術(shù)平方根,先把正確化簡(jiǎn)是解題的關(guān)鍵,本題比較容易出錯(cuò).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、20°【解析】
根據(jù)切線的性質(zhì)可知∠PAC=90°,由切線長(zhǎng)定理得PA=PB,∠P=40°,求出∠PAB的度數(shù),用∠PAC﹣∠PAB得到∠BAC的度數(shù).【詳解】解:∵PA是⊙O的切線,AC是⊙O的直徑,∴∠PAC=90°.∵PA,PB是⊙O的切線,∴PA=PB.∵∠P=40°,∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.故答案為20°.【點(diǎn)睛】本題考查了切線的性質(zhì),根據(jù)切線的性質(zhì)和切線長(zhǎng)定理進(jìn)行計(jì)算求出角的度數(shù).12、x≥【解析】
根據(jù)題意列出不等式,依據(jù)解不等式得基本步驟求解可得.【詳解】解:根據(jù)題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.【點(diǎn)睛】本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關(guān)鍵.13、①②④【解析】試題解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
∴如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)不相等的實(shí)數(shù)根,正確;
②∵和符號(hào)相同,和符號(hào)也相同,
∴如果方程M有兩根符號(hào)相同,那么方程N(yùn)的兩根符號(hào)也相同,正確;
③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
∵a≠c,
∴x2=1,解得:x=±1,錯(cuò)誤;④∵5是方程M的一個(gè)根,
∴25a+5b+c=0,
∴a+b+c=0,
∴是方程N(yùn)的一個(gè)根,正確.
故正確的是①②④.14、1.【解析】依據(jù)調(diào)和數(shù)的意義,有-=-,解得x=1.15、.【解析】
∵點(diǎn)(a,1)與(﹣2,b)關(guān)于原點(diǎn)對(duì)稱,∴b=﹣1,a=2,∴==.故答案為.考點(diǎn):關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo).16、1【解析】
根據(jù)平移規(guī)律“左加右減,上加下減”填空.【詳解】解:將拋物線y=(x+m)1向右平移1個(gè)單位后,得到拋物線解析式為y=(x+m-1)1.其對(duì)稱軸為:x=1-m=0,解得m=1.故答案是:1.【點(diǎn)睛】主要考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.三、解答題(共8題,共72分)17、.【解析】
先進(jìn)行移項(xiàng),在利用因式分解法即可求出答案.【詳解】,移項(xiàng)得:,整理得:,或,解得:或.【點(diǎn)睛】本題考查了解一元一次方程-因式分解,熟練掌握因式分解的技巧是本題解題的關(guān)鍵.18、(1)y=x2+2x﹣3;(2);(3)詳見解析.【解析】試題分析:(1)先利用拋物線的對(duì)稱性確定出點(diǎn)B的坐標(biāo),然后設(shè)拋物線的解析式為y=a(x+3)(x-1),將點(diǎn)D的坐標(biāo)代入求得a的值即可;(2)過(guò)點(diǎn)E作EF∥y軸,交AD與點(diǎn)F,過(guò)點(diǎn)C作CH⊥EF,垂足為H.設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據(jù)△ACE的面積=△EFA的面積-△EFC的面積列出三角形的面積與m的函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)求得△ACE的最大值即可;(3)當(dāng)AD為平行四邊形的對(duì)角線時(shí).設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y),利用平行四邊形對(duì)角線互相平分的性質(zhì)可求得x的值,然后將x=-2代入求得對(duì)應(yīng)的y值,然后依據(jù)=,可求得a的值;當(dāng)AD為平行四邊形的邊時(shí).設(shè)點(diǎn)M的坐標(biāo)為(-1,a).則點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5),將點(diǎn)N的坐標(biāo)代入拋物線的解析式可求得a的值.試題解析:(1)∴A(1,0),拋物線的對(duì)稱軸為直線x=-1,∴B(-3,0),設(shè)拋物線的表達(dá)式為y=a(x+3)(x-1),將點(diǎn)D(-4,5)代入,得5a=5,解得a=1,∴拋物線的表達(dá)式為y=x2+2x-3;(2)過(guò)點(diǎn)E作EF∥y軸,交AD與點(diǎn)F,交x軸于點(diǎn)G,過(guò)點(diǎn)C作CH⊥EF,垂足為H.設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=-(m+)2+.∴△ACE的面積的最大值為;(3)當(dāng)AD為平行四邊形的對(duì)角線時(shí):設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y).∴平行四邊形的對(duì)角線互相平分,∴=,=,解得x=-2,y=5-a,將點(diǎn)N的坐標(biāo)代入拋物線的表達(dá)式,得5-a=-3,解得a=8,∴點(diǎn)M的坐標(biāo)為(-1,8),當(dāng)AD為平行四邊形的邊時(shí):設(shè)點(diǎn)M的坐標(biāo)為(-1,a),則點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5),∴將x=-6,y=a+5代入拋物線的表達(dá)式,得a+5=36-12-3,解得a=16,∴M(-1,16),將x=4,y=a-5代入拋物線的表達(dá)式,得a-5=16+8-3,解得a=26,∴M(-1,26),綜上所述,當(dāng)點(diǎn)M的坐標(biāo)為(-1,26)或(-1,16)或(-1,8)時(shí),以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能成為平行四邊形.19、(1)y=x1﹣4x+6;(1)D點(diǎn)的坐標(biāo)為(6,0);(3)存在.當(dāng)點(diǎn)C的坐標(biāo)為(4,1)時(shí),△CBD的周長(zhǎng)最小【解析】
(1)只需運(yùn)用待定系數(shù)法就可求出二次函數(shù)的解析式;(1)只需運(yùn)用配方法就可求出拋物線的頂點(diǎn)坐標(biāo),只需令y=0就可求出點(diǎn)D的坐標(biāo);(3)連接CA,由于BD是定值,使得△CBD的周長(zhǎng)最小,只需CD+CB最小,根據(jù)拋物線是軸對(duì)稱圖形可得CA=CD,只需CA+CB最小,根據(jù)“兩點(diǎn)之間,線段最短”可得:當(dāng)點(diǎn)A、C、B三點(diǎn)共線時(shí),CA+CB最小,只需用待定系數(shù)法求出直線AB的解析式,就可得到點(diǎn)C的坐標(biāo).【詳解】(1)把A(1,0),B(8,6)代入,得解得:∴二次函數(shù)的解析式為;(1)由,得二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(4,﹣1).令y=0,得,解得:x1=1,x1=6,∴D點(diǎn)的坐標(biāo)為(6,0);(3)二次函數(shù)的對(duì)稱軸上存在一點(diǎn)C,使得的周長(zhǎng)最?。B接CA,如圖,∵點(diǎn)C在二次函數(shù)的對(duì)稱軸x=4上,∴xC=4,CA=CD,∴的周長(zhǎng)=CD+CB+BD=CA+CB+BD,根據(jù)“兩點(diǎn)之間,線段最短”,可得當(dāng)點(diǎn)A、C、B三點(diǎn)共線時(shí),CA+CB最小,此時(shí),由于BD是定值,因此的周長(zhǎng)最?。O(shè)直線AB的解析式為y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:∴直線AB的解析式為y=x﹣1.當(dāng)x=4時(shí),y=4﹣1=1,∴當(dāng)二次函數(shù)的對(duì)稱軸上點(diǎn)C的坐標(biāo)為(4,1)時(shí),的周長(zhǎng)最?。军c(diǎn)睛】本題考查了(1)二次函數(shù)綜合題;(1)待定系數(shù)法求一次函數(shù)解析式;(3)二次函數(shù)的性質(zhì);(4)待定系數(shù)法求二次函數(shù)解析式;(5)線段的性質(zhì):(6)兩點(diǎn)之間線段最短.20、(1)5;(2);(3)時(shí),半徑PF=;t=16,半徑PF=12.【解析】
(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí)PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,則EF=AE-AF=5-t,即y=5-t(0≤t≤4);如圖2,當(dāng)點(diǎn)P在射線AB上運(yùn)動(dòng)時(shí),即t>4,此時(shí),EF=AF-AE=t-5,即y=t-5(t>4);綜上,;(3)以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí),PF=FG,分以下三種情況:①當(dāng)t=0或t=4時(shí),顯然符合條件的⊙F不存在;②當(dāng)0<t<4時(shí),如解圖1,作FG⊥BC于點(diǎn)G,則FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,則此時(shí)⊙F的半徑PF=;③當(dāng)t>4時(shí),如解圖2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,則此時(shí)⊙F的半徑PF=12.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),勾股定理,動(dòng)點(diǎn)的函數(shù)為題,切線的性質(zhì),相似三角形的判定與性質(zhì)及分類討論的數(shù)學(xué)思想.解題的關(guān)鍵是熟練掌握切線的性質(zhì)、矩形的性質(zhì)及相似三角形的判定與性質(zhì).21、見解析.【解析】試題分析:先做出∠AOB的角平分線,再求出線段MN的垂直平分線就得到點(diǎn)P.試題解析:考點(diǎn):尺規(guī)作圖角平分
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 體操用跳板產(chǎn)品供應(yīng)鏈分析
- 冷凍機(jī)器和設(shè)備的修理或維護(hù)行業(yè)經(jīng)營(yíng)分析報(bào)告
- 全險(xiǎn)保險(xiǎn)和再保險(xiǎn)經(jīng)紀(jì)行業(yè)營(yíng)銷策略方案
- 眼鏡片清洗溶液市場(chǎng)分析及投資價(jià)值研究報(bào)告
- 西洋跳棋游戲項(xiàng)目運(yùn)營(yíng)指導(dǎo)方案
- 冷鏈烘焙產(chǎn)品行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 藥用靈芝孢子粉市場(chǎng)分析及投資價(jià)值研究報(bào)告
- 家用基因檢測(cè)設(shè)備行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 苯胺印刷機(jī)市場(chǎng)發(fā)展前景分析及供需格局研究預(yù)測(cè)報(bào)告
- 用于驅(qū)蟲的杉木項(xiàng)目運(yùn)營(yíng)指導(dǎo)方案
- 中國(guó)建筑行業(yè)現(xiàn)狀深度調(diào)研與發(fā)展趨勢(shì)分析報(bào)告(2022-2029年)
- 2023-2024學(xué)年四川省成都市九年級(jí)(上)期中物理試卷
- 7.2共建美好集體(課件)2024-2025學(xué)年七年級(jí)道德與法治上冊(cè)統(tǒng)編版
- 外研版英語(yǔ)初二上學(xué)期期中試題及答案指導(dǎo)(2024-2025學(xué)年)
- 天翼云高級(jí)解決方案架構(gòu)師認(rèn)證資格考試題庫(kù)及答案
- 2024-2030年中國(guó)水上運(yùn)動(dòng)皮劃艇行業(yè)營(yíng)銷動(dòng)態(tài)與競(jìng)爭(zhēng)趨勢(shì)預(yù)測(cè)報(bào)告
- 上下樓裝修糾紛協(xié)議書范本
- 施工成本控制員崗位職責(zé)
- 2021-2022學(xué)年北京市房山區(qū)九年級(jí)(上)期中數(shù)學(xué)試卷【含解析】
- DB11∕1450-2017 管道燃?xì)庥脩舭踩矙z技術(shù)規(guī)程
- 室上性心動(dòng)過(guò)速-醫(yī)學(xué)課件
評(píng)論
0/150
提交評(píng)論