版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年河北省秦皇島撫寧區(qū)臺營學區(qū)中考試題猜想數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在0,﹣2,3,四個數(shù)中,最小的數(shù)是()A.0 B.﹣2 C.3 D.2.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)3.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=24.下列運算中,正確的是()A.(ab2)2=a2b4B.a(chǎn)2+a2=2a4C.a(chǎn)2?a3=a6D.a(chǎn)6÷a3=a25.下面四個立體圖形,從正面、左面、上面對空都不可能看到長方形的是A. B. C. D.6.在代數(shù)式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠07.如圖,平行四邊形ABCD的周長為12,∠A=60°,設邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關系的圖象大致是()A. B. C. D.8.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°9.如圖,邊長為1的小正方形構成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠BED的正切值等于()A. B. C.2 D.10.學完分式運算后,老師出了一道題“計算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式.其中正確的是()A.小明 B.小亮 C.小芳 D.沒有正確的11.如圖,BC是⊙O的直徑,A是⊙O上的一點,∠B=58°,則∠OAC的度數(shù)是()A.32° B.30° C.38° D.58°12.的相反數(shù)是()A. B.2 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖是某商品的標志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點A、B、C、D,得到四邊形ABCD,若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為_____.14.如圖是測量河寬的示意圖,AE與BC相交于點D,∠B=∠C=90°,測得BD=120m,DC=60m,EC=50m,求得河寬AB=______m.15.如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點B按順時針方向旋轉得到矩形GBEF,點A落在矩形ABCD的邊CD上,連接CE,則CE的長是________.16.分解因式:3x2-6x+3=__.17.已知x=2是一元二次方程x2﹣2mx+4=0的一個解,則m的值為.18.如圖,四邊形ABCD與四邊形EFGH位似,位似中心點是點O,,則=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,是菱形的對角線,,(1)請用尺規(guī)作圖法,作的垂直平分線,垂足為,交于;(不要求寫作法,保留作圖痕跡)在(1)條件下,連接,求的度數(shù).20.(6分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當與滿足什么關系時,四邊形是正方形?請說明理由.21.(6分)如圖,熱氣球的探測器顯示,從熱氣球A看一棟髙樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,求這棟高樓BC的高度.22.(8分)如圖,正六邊形ABCDEF在正三角形網(wǎng)格內(nèi),點O為正六邊形的中心,僅用無刻度的直尺完成以下作圖.(1)在圖1中,過點O作AC的平行線;(2)在圖2中,過點E作AC的平行線.23.(8分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(Ⅰ)△ABC的面積等于_____;(Ⅱ)若四邊形DEFG是正方形,且點D,E在邊CA上,點F在邊AB上,點G在邊BC上,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點E,點G,并簡要說明點E,點G的位置是如何找到的(不要求證明)_____.24.(10分)如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點D,交AC于點E,連接AD、BD、CD.(1)求證:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.25.(10分)(1)計算:|﹣3|+(π﹣2018)0﹣2sin30°+()﹣1.(2)先化簡,再求值:(x﹣1)÷(﹣1),其中x為方程x2+3x+2=0的根.26.(12分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.27.(12分)在平面直角坐標系xOy中,拋物線y=12x(1)求直線BC的解析式;(2)點D在拋物線上,且點D的橫坐標為1.將拋物線在點A,D之間的部分(包含點A,D)記為圖象G,若圖象G向下平移t(t>0)個單位后與直線BC只有一個公共點,求t的取值范圍.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)實數(shù)比較大小的法則進行比較即可.【詳解】∵在這四個數(shù)中3>0,>0,-2<0,∴-2最?。蔬xB.【點睛】本題考查的是實數(shù)的大小比較,即正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?、D【解析】
由表易得x+(10-x)=10,所以總人數(shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團總人數(shù)為30人,∴合唱團成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.3、A【解析】
根據(jù)二次根式的性質(zhì)對A進行判斷;根據(jù)二次根式的加減法對B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.4、A【解析】
直接利用積的乘方運算法則以及合并同類項法則和同底數(shù)冪的乘除運算法則分別分析得出答案.【詳解】解:A、(ab2)2=a2b4,故此選項正確;B、a2+a2=2a2,故此選項錯誤;C、a2?a3=a5,故此選項錯誤;D、a6÷a3=a3,故此選項錯誤;故選:A.【點睛】此題主要考查了積的乘方運算以及合并同類項和同底數(shù)冪的乘除運算,正確掌握運算法則是解題關鍵.5、B【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形依此找到從正面、左面、上面觀察都不可能看到長方形的圖形.【詳解】解:A、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤;B、主視圖為等腰三角形,左視圖為等腰三角形,俯視圖為圓,從正面、左面、上面觀察都不可能看到長方形,故本選項正確;C、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;D、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤.故選:B.【點睛】本題重點考查三視圖的定義以及考查學生的空間想象能力.6、D【解析】
根據(jù)二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點睛】本題考查二次根式有意義的條件,解題的關鍵是熟練運用二次根式有意義的條件,本題屬于基礎題型.7、C【解析】
過點B作BE⊥AD于E,構建直角△ABE,通過解該直角三角形求得BE的長度,然后利用平行四邊形的面積公式列出函數(shù)關系式,結合函數(shù)關系式找到對應的圖像.【詳解】如圖,過點B作BE⊥AD于E.∵∠A=60°,設AB邊的長為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開口向下的拋物線的一部分,觀察選項,C符合題意.故選C.【點睛】本題考查了二次函數(shù)的圖像,根據(jù)題意求出正確的函數(shù)關系式是解題的關鍵.8、A【解析】
根據(jù)∠ABD=35°就可以求出的度數(shù),再根據(jù),可以求出,因此就可以求得的度數(shù),從而求得∠DBC【詳解】解:∵∠ABD=35°,∴的度數(shù)都是70°,∵BD為直徑,∴的度數(shù)是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數(shù)也是110°,∴的度數(shù)是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【點睛】本題考查了等腰三角形性質(zhì)、圓周角定理,主要考查學生的推理能力.9、D【解析】
根據(jù)同弧或等弧所對的圓周角相等可知∠BED=∠BAD,再結合圖形根據(jù)正切的定義進行求解即可得.【詳解】∵∠DAB=∠DEB,∴tan∠DEB=tan∠DAB=,故選D.【點睛】本題考查了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念,正確得出相等的角是解題關鍵.10、C【解析】試題解析:=====1.所以正確的應是小芳.故選C.11、A【解析】
根據(jù)∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點睛】此題考查了圓周角的性質(zhì)與等腰三角形的性質(zhì).此題比較簡單,解題的關鍵是注意數(shù)形結合思想的應用.12、D【解析】
因為-+=0,所以-的相反數(shù)是.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、10πcm1.【解析】
根據(jù)已知條件得到四邊形ABCD是矩形,求得圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,根據(jù)等腰三角形的性質(zhì)得到∠BAC=∠ABO=36°,由圓周角定理得到∠AOD=71°,于是得到結論.【詳解】解:∵AC與BD是⊙O的兩條直徑,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四邊形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOD,∴圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴圖中陰影部分的面積=1×=10π,故答案為10πcm1.點睛:本題考查了扇形的面積,矩形的判定和性質(zhì),圓周角定理的推論,三角形外角的性質(zhì),熟練掌握扇形的面積公式是解題的關鍵.14、1【解析】
由兩角對應相等可得△BAD∽△CED,利用對應邊成比例即可得兩岸間的大致距離AB的長.【詳解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案為1.【點睛】本題主要考查了相似三角形的應用,用到的知識點為:兩角對應相等的兩三角形相似;相似三角形的對應邊成比例.15、【解析】
解:連接AG,由旋轉變換的性質(zhì)可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,則AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案為.【點睛】本題考查的是旋轉變換的性質(zhì)、相似三角形的判定和性質(zhì),掌握勾股定理、矩形的性質(zhì)、旋轉變換的性質(zhì)是解題的關鍵.16、3(x-1)2【解析】
先提取公因式3,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】.故答案是:3(x-1)2.【點睛】考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.17、1.【解析】試題分析:直接把x=1代入已知方程就得到關于m的方程,再解此方程即可.試題解析:∵x=1是一元二次方程x1-1mx+4=0的一個解,∴4-4m+4=0,∴m=1.考點:一元二次方程的解.18、【解析】試題分析:∵四邊形ABCD與四邊形EFGH位似,位似中心點是點O,∴==,則===.故答案為.點睛:本題考查的是位似變換的性質(zhì),掌握位似圖形與相似圖形的關系、相似多邊形的性質(zhì)是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)答案見解析;(2)45°.【解析】
(1)分別以A、B為圓心,大于長為半徑畫弧,過兩弧的交點作直線即可;(2)根據(jù)∠DBF=∠ABD﹣∠ABF計算即可;【詳解】(1)如圖所示,直線EF即為所求;(2)∵四邊形ABCD是菱形,∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°.∵EF垂直平分線段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【點睛】本題考查了線段的垂直平分線作法和性質(zhì),菱形的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題.20、見解析【解析】
(1)由菱形的性質(zhì)得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;
(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點E,O,F(xiàn)分別為AB,AC,AD的中點,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當AB⊥BC時,四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【點睛】本題考查了全等三角形、菱形、正方形的性質(zhì),解題的關鍵是熟練的掌握菱形、正方形、全等三角形的性質(zhì).21、這棟高樓的高度是【解析】
過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】過點A作AD⊥BC于點D,依題意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:這棟高樓的高度是.【點睛】本題主要考查了解直角三角形的應用-仰角俯角問題,難度適中.對于一般三角形的計算,常用的方法是利用作高線轉化為直角三角形的計算.22、(1)作圖見解析;(2)作圖見解析.【解析】試題分析:利用正六邊形的特性作圖即可.試題解析:(1)如圖所示(答案不唯一):(2)如圖所示(答案不唯一):23、6作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G【解析】
(1)根據(jù)三角形面積公式即可求解,(2)作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G,過G點作GD⊥AC于D,四邊形DEFG即為所求正方形.【詳解】解:(1)4×3÷2=6,故△ABC的面積等于6.(2)如圖所示,作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G,四邊形DEFG即為所求正方形.
故答案為:6,作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G.【點睛】本題主要考查了作圖-應用與設計作圖、三角形的面積以及正方形的性質(zhì)、角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)及正方形的性質(zhì)作出正確的圖形是解本題的關鍵.24、(1)見解析;(2)tan∠DBC=.【解析】
(1)先利用圓周角定理得到∠ACB=90°,再利用平行線的性質(zhì)得∠AEO=90°,則根據(jù)垂徑定理得到,從而有AD=CD;(2)先在Rt△OAE中利用勾股定理計算出AE,則根據(jù)正切的定義得到tan∠DAE的值,然后根據(jù)圓周角定理得到∠DAC=∠DBC,從而可確定tan∠DBC的值.【詳解】(1)證明:∵AB為直徑,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE==4,∴tan∠DAE=,∵∠DAC=∠DBC,∴tan∠DBC=.【點睛】垂徑定理及圓周角定理是本題的考點,熟練掌握垂徑定理及圓周角定理是解題的關鍵.25、(1)6;(2)﹣(x+1),1.【解析】
(1)原式=3+1﹣2×+3=6(2)由題意可知:x2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x﹣1)÷=﹣(x+1)當x=﹣1時,x+1=0,分式無意義,當x=﹣2時,原式=126、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數(shù);由旋轉的性質(zhì)得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉的性質(zhì)得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人師德師風自查報告15篇
- 承攬加工合同模板示例
- 企業(yè)破產(chǎn)重整和解協(xié)議操作指南
- 房產(chǎn)互換協(xié)議撰寫
- 2024標準合伙人合作協(xié)議書范本
- 工藝品加盟合同書示范文本
- 2024版圖書出版贊助協(xié)議
- 事業(yè)單位聘用合同期限是多長時間2024年
- 廣告發(fā)布協(xié)議的撰寫技巧
- 股東變更-章程修正范本
- PCN變更申請單
- 鋁合金門窗作業(yè)規(guī)程
- 《河流》第1課時“以外流河為主”教學設計
- 鐵塔組立施工作業(yè)指導書抱桿計算
- 反滲透水處理設備國家標準文件.doc
- 科技輔導員結構化面試
- 酒店業(yè)廚房滅“四害”計劃及記錄表
- 樣品藥品采購供應儲備制度的執(zhí)行情況分析總結
- 第三章 閘板防噴器
- 鄉(xiāng)鎮(zhèn)精神文明建設工作專題調(diào)研報告
- 智能材料課件完整版
評論
0/150
提交評論