2022屆甘肅省張掖市城關(guān)初中重點中學(xué)中考三模數(shù)學(xué)試題含解析_第1頁
2022屆甘肅省張掖市城關(guān)初中重點中學(xué)中考三模數(shù)學(xué)試題含解析_第2頁
2022屆甘肅省張掖市城關(guān)初中重點中學(xué)中考三模數(shù)學(xué)試題含解析_第3頁
2022屆甘肅省張掖市城關(guān)初中重點中學(xué)中考三模數(shù)學(xué)試題含解析_第4頁
2022屆甘肅省張掖市城關(guān)初中重點中學(xué)中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022屆甘肅省張掖市城關(guān)初中重點中學(xué)中考三模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在中,、分別為、邊上的點,,與相交于點,則下列結(jié)論一定正確的是()A. B.C. D.2.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.B.C.D.3.若數(shù)a使關(guān)于x的不等式組有解且所有解都是2x+6>0的解,且使關(guān)于y的分式方程+3=有整數(shù)解,則滿足條件的所有整數(shù)a的個數(shù)是()A.5 B.4 C.3 D.24.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結(jié)論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=5.某公司有11名員工,他們所在部門及相應(yīng)每人所創(chuàng)年利潤如下表所示,已知這11個數(shù)據(jù)的中位數(shù)為1.部門人數(shù)每人所創(chuàng)年利潤(單位:萬元)11938743這11名員工每人所創(chuàng)年利潤的眾數(shù)、平均數(shù)分別是A.10,1 B.7,8 C.1,6.1 D.1,66.的相反數(shù)是()A. B.2 C. D.7.如圖,等腰直角三角形的頂點A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°8.下列運算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a69.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣110.兩個相同的瓶子裝滿酒精溶液,在一個瓶子中酒精與水的容積之比是1:p,而在另一個瓶子中是1:q,若把兩瓶溶液混合在一起,混合液中的酒精與水的容積之比是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:4a2-4a+1=______.12.已知:如圖,矩形ABCD中,AB=5,BC=3,E為AD上一點,把矩形ABCD沿BE折疊,若點A恰好落在CD上點F處,則AE的長為_____.13.已知關(guān)于x的方程x2+mx+4=0有兩個相等的實數(shù)根,則實數(shù)m的值是______.14.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.15.如圖,已知長方體的三條棱AB、BC、BD分別為4,5,2,螞蟻從A點出發(fā)沿長方體的表面爬行到M的最短路程的平方是_____.16.如圖,已知△ABC,AB=6,AC=5,D是邊AB的中點,E是邊AC上一點,∠ADE=∠C,∠BAC的平分線分別交DE、BC于點F、G,那么的值為__________.17.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠BAD=60°,則∠ACD=_____°.三、解答題(共7小題,滿分69分)18.(10分)觀察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉(zhuǎn)90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是,位置關(guān)系是.探究證明:在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.拓展延伸:如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.19.(5分)太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)20.(8分)某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.求每件甲種、乙種玩具的進價分別是多少元?商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?21.(10分)為了弘揚學(xué)生愛國主義精神,充分展現(xiàn)新時期青少年良好的思想道德素質(zhì)和精神風(fēng)貌,豐富學(xué)生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經(jīng)典詩文誦讀比賽.九(1)班通過內(nèi)部初選,選出了麗麗和張強兩位同學(xué),但學(xué)校規(guī)定每班只有1個名額,經(jīng)過老師與同學(xué)們商量,用所學(xué)的概率知識設(shè)計摸球游戲決定誰去,設(shè)計的游戲規(guī)則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復(fù)以上動作,直到分出勝負為止.根據(jù)以上規(guī)則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.22.(10分)如圖,AB為⊙O的直徑,點E在⊙O,C為弧BE的中點,過點C作直線CD⊥AE于D,連接AC、BC.試判斷直線CD與⊙O的位置關(guān)系,并說明理由若AD=2,AC=,求⊙O的半徑.23.(12分)學(xué)習(xí)了正多邊形之后,小馬同學(xué)發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.24.(14分)如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側(cè)),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側(cè)上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)平行線分線段成比例定理逐項分析即可.【詳解】A.∵,∴,,∴,故A正確;B.∵,∴,故B不正確;C.∵,∴,故C不正確;D.∵,∴,故D不正確;故選A.【點睛】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應(yīng)線段的長度成比例.推論:平行于三角形一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.2、B【解析】試題解析:A.是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.3、D【解析】

由不等式組有解且滿足已知不等式,以及分式方程有整數(shù)解,確定出滿足題意整數(shù)a的值即可.【詳解】不等式組整理得:,由不等式組有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整數(shù)解,得到a=0,2,共2個,故選:D.【點睛】本題考查了分式方程的解,解一元一次不等式,以及解一元一次不等式組,熟練掌握運算法則是解本題的關(guān)鍵.4、D【解析】【分析】直接利用根與系數(shù)的關(guān)系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數(shù)的性質(zhì)得到x1、x2異號,且負數(shù)的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【詳解】根據(jù)題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數(shù)的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【點睛】本題考查了一元二次方程的解、一元二次方程根與系數(shù)的關(guān)系,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.5、D【解析】

根據(jù)中位數(shù)的定義即可求出x的值,然后根據(jù)眾數(shù)的定義和平均數(shù)公式計算即可.【詳解】解:這11個數(shù)據(jù)的中位數(shù)是第8個數(shù)據(jù),且中位數(shù)為1,,則這11個數(shù)據(jù)為3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以這組數(shù)據(jù)的眾數(shù)為1萬元,平均數(shù)為萬元.故選:.【點睛】此題考查的是中位數(shù)、眾數(shù)和平均數(shù),掌握中位數(shù)的定義、眾數(shù)的定義和平均數(shù)公式是解決此題的關(guān)鍵.6、D【解析】

因為-+=0,所以-的相反數(shù)是.故選D.7、B【解析】分析:由等腰直角三角形的性質(zhì)和平行線的性質(zhì)求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點睛:本題考查了平行線的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握等腰直角三角形的性質(zhì),由平行線的性質(zhì)求出∠ACD的度數(shù)是解決問題的關(guān)鍵.8、D【解析】

根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進行計算即可.【詳解】A、(a2)5=a10,故原題計算錯誤;B、(x﹣1)2=x2﹣2x+1,故原題計算錯誤;C、3a2b和3ab2不是同類項,不能合并,故原題計算錯誤;D、a2?a4=a6,故原題計算正確;故選:D.【點睛】此題主要考查了冪的乘方、完全平方公式、合并同類項和同底數(shù)冪的乘法,關(guān)鍵是掌握各計算法則.9、C【解析】

首先找出分式的最簡公分母,進而去分母,再解分式方程即可.【詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗:當x=-時,(x+1)2≠0,故x=-是原方程的根.故選C.【點睛】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關(guān)鍵.10、C【解析】

混合液中的酒精與水的容積之比為兩瓶中的純酒精與兩瓶中的水之比,分別算出純酒精和水的體積即可得答案.【詳解】設(shè)瓶子的容積即酒精與水的和是1,則純酒精之和為:1×+1×=+,水之和為:+,∴混合液中的酒精與水的容積之比為:(+)÷(+)=,故選C.【點睛】本題主要考查分式的混合運算,找到相應(yīng)的等量關(guān)系是解決本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據(jù)完全平方公式的特點:兩項平方項的符號相同,另一項是兩底數(shù)積的2倍,本題可用完全平方公式分解因式.【詳解】解:.故答案為.【點睛】本題考查用完全平方公式法進行因式分解,能用完全平方公式法進行因式分解的式子的特點需熟練掌握.12、【解析】

根據(jù)矩形的性質(zhì)得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根據(jù)折疊得到BF=AB=5,EF=EA,根據(jù)勾股定理求出CF,由此得到DF的長,再根據(jù)勾股定理即可求出AE.【詳解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折疊的性質(zhì)可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,設(shè)AE=x,則EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案為:.【點睛】此題考查矩形的性質(zhì),勾股定理,折疊的性質(zhì),由折疊得到BF的長度是解題的關(guān)鍵.13、±4【解析】分析:由方程有兩個相等的實數(shù)根,得到根的判別式等于0,列出關(guān)于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個相等的實數(shù)根,∴解得:故答案為點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.14、【解析】

根據(jù)題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數(shù)目以及能搭成一個三角形的情況數(shù)目,根據(jù)概率的計算方法,計算可得答案.【詳解】根據(jù)題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、61【解析】分析:要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點之間線段最短解答,注意此題展開圖后螞蟻的爬行路線有兩種,分別求出,選取最短的路程.詳解:如圖①:AM2=AB2+BM2=16+(5+2)2=65;如圖②:AM2=AC2+CM2=92+4=85;如圖:AM2=52+(4+2)2=61.∴螞蟻從A點出發(fā)沿長方體的表面爬行到M的最短路程的平方是:61.故答案為:61.點睛:此題主要考查了平面展開圖,求最短路徑,解決此類題目的關(guān)鍵是把長方體的側(cè)面展開“化立體為平面”,用勾股定理解決.16、【解析】

由題中所給條件證明△ADF△ACG,可求出的值.【詳解】解:在△ADF和△ACG中,AB=6,AC=5,D是邊AB的中點AG是∠BAC的平分線,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案為.【點睛】本題考查了相似三角形的判定和性質(zhì),難度適中,需熟練掌握.17、1【解析】

連接BD.根據(jù)圓周角定理可得.【詳解】解:如圖,連接BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案為1.【點睛】考核知識點:圓周角定理.理解定義是關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)CE=BD,CE⊥BD.(2)(1)中的結(jié)論仍然成立.理由見解析;(3).【解析】分析:(1)線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)證明的方法與(1)類似.(3)過A作AM⊥BC于M,EN⊥AM于N,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,則NE=MA,由于∠ACB=45°,則AM=MC,所以MC=NE,易得四邊形MCEN為矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,設(shè)DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函數(shù)即可求得CF的最大值.詳解:(1)①∵AB=AC,∠BAC=90°,∴線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案為CE=BD,CE⊥BD.(2)(1)中的結(jié)論仍然成立.理由如下:如圖,∵線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系分別為:CE=BD,CE⊥BD.(3)如圖3,過A作AM⊥BC于M,EN⊥AM于N,∵線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC為等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四邊形MCEN為平行四邊形,∵∠AMC=90°,∴四邊形MCEN為矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴,設(shè)DC=x,∵∠ACB=45°,AC=,∴AM=CM=1,MD=1-x,∴,∴CF=-x2+x=-(x-)2+,∴當x=時有最大值,CF最大值為.點睛:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等.也考查了等腰直角三角形的性質(zhì)和三角形全等及相似的判定與性質(zhì).19、1.9米【解析】試題分析:在直角三角形BCD中,由BC與sinB的值,利用銳角三角函數(shù)定義求出CD的長,在直角三角形ACD中,由∠ACD度數(shù),以及CD的長,利用銳角三角函數(shù)定義求出AD的長即可.試題解析:∵∠BDC=90°,BC=10,sinB=,∴CD=BC?sinB=10×0.2=5.9,∵在Rt△BCD中,∠BCD=90°﹣∠B=90°﹣36°=54°,∴∠ACD=∠BCD﹣∠ACB=54°﹣36°=18°,∴在Rt△ACD中,tan∠ACD=,∴AD=CD?tan∠ACD=5.9×0.32=1.888≈1.9(米),則改建后南屋面邊沿增加部分AD的長約為1.9米.考點:解直角三角形的應(yīng)用20、(1)甲,乙兩種玩具分別是15元/件,1元/件;(2)共有四種方案.【解析】

(1)設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,根據(jù)已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同可列方程求解.(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48﹣y)件,根據(jù)甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,可列出不等式組求解.【詳解】解:設(shè)甲種玩具進價x元/件,則乙種玩具進價為(40﹣x)元/件,x=15,經(jīng)檢驗x=15是原方程的解.∴40﹣x=1.甲,乙兩種玩具分別是15元/件,1元/件;(2)設(shè)購進甲種玩具y件,則購進乙種玩具(48﹣y)件,,解得20≤y<2.因為y是整數(shù),甲種玩具的件數(shù)少于乙種玩具的件數(shù),∴y取20,21,22,23,共有4種方案.考點:分式方程的應(yīng)用;一元一次不等式組的應(yīng)用.21、(1);(2)不公平,理由見解析.【解析】

(1)畫樹狀圖列出所有等可能結(jié)果數(shù),找到摸出一個黃球和一個白球的結(jié)果數(shù),根據(jù)概率公式可得答案;(2)結(jié)合(1)種樹狀圖根據(jù)概率公式計算出兩人獲勝的概率,比較大小即可判斷.【詳解】(1)畫樹狀圖如下:由樹狀圖可知共有20種等可能結(jié)果,其中一次性摸出一個黃球和一個白球的有11種結(jié)果,∴一次性摸出一個黃球和一個白球的概率為;(2)不公平,由(1)種樹狀圖可知,麗麗去的概率為,張強去的概率為=,∵,∴該游戲不公平.【點睛】本題考查了列表法與樹狀圖法,解題的關(guān)鍵是根據(jù)題意畫出樹狀圖.22、(1)直線CD與⊙O相切;(2)⊙O的半徑為1.1.【解析】

(1)相切,連接OC,∵C為的中點,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直線CD與⊙O相切;(2)連接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切線,∴=AD?DE,∴DE=1,∴CE==,∵C為的中點,∴BC=CE=,∵AB為⊙O的直徑,∴∠ACB=90°,∴AB==2.∴半徑為1.123、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】

(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論