版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022學(xué)年上學(xué)期高二期末限時(shí)訓(xùn)練試卷數(shù)學(xué)命題學(xué)校:廣東實(shí)驗(yàn)中學(xué)命題人:本試卷分選擇題和非選擇題兩部分,共4頁(yè),滿(mǎn)分150分,考試用時(shí)120分鐘.注意事項(xiàng):1.開(kāi)考前,考生務(wù)必用黑色字跡的鋼筆或簽字筆將自已的校名、姓名、班級(jí)、考號(hào)等相關(guān)信息填寫(xiě)在答題卡指定區(qū)域內(nèi).2.選擇題每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其它答案;不能答在試卷上.3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)的相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用鉛筆和涂改液.不按以上要求作答的答案無(wú)效.4.考生必須保持答題卡的整潔.第一部分選擇題(共60分)一、單項(xiàng)選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1集合,,則()A. B. C. D.2.某地天氣預(yù)報(bào)中說(shuō)未來(lái)三天中該地下雪的概率均為0.6,為了用隨機(jī)模擬的方法估計(jì)未來(lái)三天中恰有兩天下雪的概率,用計(jì)算機(jī)產(chǎn)生1~5之間的隨機(jī)整數(shù),當(dāng)出現(xiàn)隨機(jī)數(shù)1,2或3時(shí),表示該天下雪,其概率為0.6,每3個(gè)隨機(jī)數(shù)一組,表示一次模擬的結(jié)果,共產(chǎn)生了如下的20組隨機(jī)數(shù):522553135354313531423521541142125323345131332515324132255325則據(jù)此估計(jì)該地未來(lái)三天中恰有兩天下雪的概率為()A. B. C. D.3.設(shè)復(fù)數(shù)滿(mǎn)足,則在復(fù)平面上對(duì)應(yīng)的圖形是()A.兩條直線 B.橢圓 C.圓 D.雙曲線4.已知數(shù)列是等差數(shù)列,且,將去掉一項(xiàng)后,剩下三項(xiàng)依次為等比數(shù)列的前三項(xiàng),則()A. B. C. D.5.圓內(nèi)接四邊形中,,是圓的直徑,則()A.12 B. C.20 D.6.已知數(shù)列為等差數(shù)列,若,,且數(shù)列的前項(xiàng)和有最大值,那么取得最小正值時(shí)為()A.11 B.12 C.7 D.67.已知過(guò)橢圓左焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),,與軸交于點(diǎn),點(diǎn),是線段的三等分點(diǎn),則該橢圓的標(biāo)準(zhǔn)方程是()A. B. C. D.8.定義在的函數(shù)滿(mǎn)足:對(duì),,且,成立,且,則不等式的解集為()A. B. C. D.二、多項(xiàng)選擇題(本題共4小題,每小題5分,共20分.在每小題給出的四個(gè)選項(xiàng)中,有多個(gè)選項(xiàng)是符合題目要求的,全部選對(duì)的得5分,選對(duì)但不全的得2分,有選錯(cuò)的得0分)9.已知雙曲線(,)的右焦點(diǎn)為,在線段上存在一點(diǎn),使得到漸近線的距離為,則雙曲線離心率的值可以為()A. B.2 C. D.10.已知正實(shí)數(shù),滿(mǎn)足,下列說(shuō)法正確的是()A.的最大值為2 B.的最小值為4C.的最小值為 D.的最小值為11.已知正方體的邊長(zhǎng)為2,為正方體內(nèi)(包括邊界)上的一點(diǎn),且滿(mǎn)足,則下列說(shuō)正確的有()A.若為面內(nèi)一點(diǎn),則點(diǎn)的軌跡長(zhǎng)度為B.過(guò)作面使得,若,則的軌跡為橢圓的一部分C.若,分別為,的中點(diǎn),面,則的軌跡為雙曲線的一部分D.若,分別為,的中點(diǎn),與面所成角為,則的范圍為12.已知函數(shù),,則()A.函數(shù)為偶函數(shù)B.函數(shù)為奇函數(shù)C.函數(shù)為奇函數(shù)D.為函數(shù)函數(shù)圖像的對(duì)稱(chēng)軸第二部分非選擇題(共90分)三、填空題(本大題共4小題,每小題5分,共20分)13.已知首項(xiàng)為2的數(shù)列對(duì)滿(mǎn)足,則數(shù)列的通項(xiàng)公式______.14.已知直線的方向向量為,點(diǎn)在直線上,則點(diǎn)到直線的距離為_(kāi)_____.15.函數(shù)(,)的部分圖象如圖所示,直線()與這部分圖象相交于三個(gè)點(diǎn),橫坐標(biāo)從左到右分別為,,,則______.16.已知實(shí)數(shù)x、y滿(mǎn)足,則的取值范圍是________.四、解答題(本題共6小題,共70分.解答時(shí)應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟)17.在數(shù)列中,,點(diǎn)在直線x-y+3=0上.(1)求數(shù)列的通項(xiàng)公式;(2)為等比數(shù)列,且,記為數(shù)列的前n項(xiàng)和,求.18.數(shù)學(xué)家歐拉在1765年提出;三角形的外心,重心,垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱(chēng)之為三角形的歐拉線.若的頂點(diǎn)A(2,0),B(0,4),且的歐拉線的方程為,記外接圓圓心記為M.求:(1)圓M的方程;(2)已知圓N:,過(guò)圓M和圓N外一點(diǎn)P分別作兩圓的切線,與圓M切于點(diǎn)A,與圓N切于點(diǎn)B,且,求P點(diǎn)的軌跡方程.19.已知平面內(nèi)一動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離多1.(1)求點(diǎn)的軌跡方程;(2)過(guò)點(diǎn)作直線與曲線交于(點(diǎn)在點(diǎn)左側(cè)),求的最小值.20.已知正項(xiàng)數(shù)列滿(mǎn)足,且,設(shè).(1)求證:數(shù)列為等比數(shù)列并求的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和.21.已知四棱錐中,,,,,,面面,.(1)求證:;(2)求面與面所成的二面角的余弦值.22.換元法在數(shù)學(xué)中應(yīng)用較為廣泛,其目在于把不容易解決的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)情景.例如,已知,,,求的最小值.其求解過(guò)程可以是:設(shè),,其中,則;當(dāng)時(shí)取得最小值16,這種換元方法稱(chēng)為“對(duì)稱(chēng)換元”.已知平面內(nèi)一動(dòng)點(diǎn)到兩個(gè)定點(diǎn),的距離之和為4.(1)請(qǐng)利用上述方法,求點(diǎn)的軌跡方程;(2)過(guò)軌跡與軸負(fù)半軸交點(diǎn)作斜率為的直線交軌跡于另一點(diǎn),連接并延長(zhǎng)交于點(diǎn),若,求的值. 2022學(xué)年上學(xué)期高二期末限時(shí)訓(xùn)練試卷數(shù)學(xué)命題學(xué)校:廣東實(shí)驗(yàn)中學(xué)命題人:本試卷分選擇題和非選擇題兩部分,共4頁(yè),滿(mǎn)分150分,考試用時(shí)120分鐘.注意事項(xiàng):1.開(kāi)考前,考生務(wù)必用黑色字跡的鋼筆或簽字筆將自已的校名、姓名、班級(jí)、考號(hào)等相關(guān)信息填寫(xiě)在答題卡指定區(qū)域內(nèi).2.選擇題每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其它答案;不能答在試卷上.3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)的相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用鉛筆和涂改液.不按以上要求作答的答案無(wú)效.4.考生必須保持答題卡的整潔.第一部分選擇題(共60分)一、單項(xiàng)選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.集合,,則()A. B. C. D.【答案】D【解析】【分析】根據(jù)三角函數(shù)的性質(zhì)求出集合,再解一元二次不等式求出集合,即可求解.【詳解】由得解得或,所以或,又由解得,所以,所以,故選:D.2.某地天氣預(yù)報(bào)中說(shuō)未來(lái)三天中該地下雪的概率均為0.6,為了用隨機(jī)模擬的方法估計(jì)未來(lái)三天中恰有兩天下雪的概率,用計(jì)算機(jī)產(chǎn)生1~5之間的隨機(jī)整數(shù),當(dāng)出現(xiàn)隨機(jī)數(shù)1,2或3時(shí),表示該天下雪,其概率為0.6,每3個(gè)隨機(jī)數(shù)一組,表示一次模擬的結(jié)果,共產(chǎn)生了如下的20組隨機(jī)數(shù):522553135354313531423521541142125323345131332515324132255325則據(jù)此估計(jì)該地未來(lái)三天中恰有兩天下雪的概率為()A. B. C. D.【答案】B【解析】【分析】根據(jù)條件找出三天中恰有兩天下雪的隨機(jī)數(shù),再按照古典概型求概率.【詳解】20組數(shù)據(jù)中,其中522,135,531,423,521,142,125,324,325表示三天中恰有2天下雪,共有9組隨機(jī)數(shù),所以.故選:B3.設(shè)復(fù)數(shù)滿(mǎn)足,則在復(fù)平面上對(duì)應(yīng)的圖形是()A.兩條直線 B.橢圓 C.圓 D.雙曲線【答案】A【解析】【分析】設(shè),根據(jù)模長(zhǎng)相等列出方程,得到在復(fù)平面上對(duì)應(yīng)的圖形是兩條直線.【詳解】設(shè),則,可得:,化簡(jiǎn)得:,即或,則在復(fù)平面上對(duì)應(yīng)的圖形是兩條直線.故選:A4.已知數(shù)列是等差數(shù)列,且,將去掉一項(xiàng)后,剩下三項(xiàng)依次為等比數(shù)列的前三項(xiàng),則()A. B. C. D.【答案】C【解析】【分析】根據(jù)給定條件,利用等差數(shù)列性質(zhì)求出公差及通項(xiàng)公式,再確定等比數(shù)列的前三項(xiàng)作答.【詳解】在等差數(shù)列中,,解得,而,即有公差,等差數(shù)列的通項(xiàng),則,顯然去掉,成等比數(shù)列,則數(shù)列的首項(xiàng)為,公比,所以.故選:C5.圓內(nèi)接四邊形中,,是圓的直徑,則()A.12 B. C.20 D.【答案】B【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)及數(shù)量積的定義即求.【詳解】由題知,,∴.故選:B.6.已知數(shù)列為等差數(shù)列,若,,且數(shù)列的前項(xiàng)和有最大值,那么取得最小正值時(shí)為()A.11 B.12 C.7 D.6【答案】A【解析】【分析】根據(jù)已知條件,判斷出,的符號(hào),再根據(jù)等差數(shù)列前項(xiàng)和的計(jì)算公式,即可求得.【詳解】因?yàn)榈炔顢?shù)列的前項(xiàng)和有最大值,故可得,因?yàn)?,故可得,即,所以,可得,又因?yàn)?,故可得,所以?shù)列的前6項(xiàng)和有最大值,且,又因?yàn)椋?,故取得最小正值時(shí)n等于.故選:A.7.已知過(guò)橢圓的左焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),,與軸交于點(diǎn),點(diǎn),是線段的三等分點(diǎn),則該橢圓的標(biāo)準(zhǔn)方程是()A. B. C. D.【答案】B【解析】【分析】不妨設(shè)在第一象限,由橢圓的左焦點(diǎn),點(diǎn),是線段的三等分點(diǎn),易得,代入橢圓方程可得,又,兩式相結(jié)合即可求解【詳解】不妨設(shè)在第一象限,由橢圓的左焦點(diǎn),點(diǎn),是線段的三等分點(diǎn),則為的中點(diǎn),為中點(diǎn),所以,所以,則即,所以,,將點(diǎn)坐標(biāo)代入橢圓方程得,即,又,所以,,所以橢圓的標(biāo)準(zhǔn)方程是.故選:B8.定義在的函數(shù)滿(mǎn)足:對(duì),,且,成立,且,則不等式的解集為()A. B. C. D.【答案】D【解析】【分析】構(gòu)造函數(shù),討論單調(diào)性,利用單調(diào)性解不等式.【詳解】由且,,則兩邊同時(shí)除以可得,令,則在單調(diào)遞增,由得且,即解得,故選:D.二、多項(xiàng)選擇題(本題共4小題,每小題5分,共20分.在每小題給出的四個(gè)選項(xiàng)中,有多個(gè)選項(xiàng)是符合題目要求的,全部選對(duì)的得5分,選對(duì)但不全的得2分,有選錯(cuò)的得0分)9.已知雙曲線(,)的右焦點(diǎn)為,在線段上存在一點(diǎn),使得到漸近線的距離為,則雙曲線離心率的值可以為()A. B.2 C. D.【答案】AB【解析】【分析】寫(xiě)出雙曲線的漸近線方程,利用點(diǎn)到直線距離列出不等式,得到,判斷出AB正確.【詳解】的一條漸近線方程為,設(shè),,,整理得:,因?yàn)?,所以,即,解得:,因?yàn)?,,,,所以AB正確,CD錯(cuò)誤.故選:AB10.已知正實(shí)數(shù),滿(mǎn)足,下列說(shuō)法正確是()A.的最大值為2 B.的最小值為4C.的最小值為 D.的最小值為【答案】BCD【解析】【分析】利用基本不等式和解一元二次不等式可判斷A,B,將代入,化簡(jiǎn),利用基本不等式求解可判斷C,利用基本不等式“1”的妙用可判斷D.【詳解】對(duì)于A,因?yàn)?,即,解得,又因?yàn)檎龑?shí)數(shù),,所以,則有,當(dāng)且僅當(dāng)時(shí)取得等號(hào),故A錯(cuò)誤;對(duì)于B,,即,解得(舍),當(dāng)且僅當(dāng)時(shí)取得等號(hào),故B正確;對(duì)于C,由題可得所以,解得,,當(dāng)且僅當(dāng)即時(shí)取得等號(hào),故C正確;對(duì)于D,,當(dāng)且僅當(dāng)時(shí)取得等號(hào),故D正確,故選:BCD.11.已知正方體的邊長(zhǎng)為2,為正方體內(nèi)(包括邊界)上的一點(diǎn),且滿(mǎn)足,則下列說(shuō)正確的有()A.若為面內(nèi)一點(diǎn),則點(diǎn)的軌跡長(zhǎng)度為B.過(guò)作面使得,若,則的軌跡為橢圓的一部分C.若,分別為,的中點(diǎn),面,則的軌跡為雙曲線的一部分D.若,分別為,的中點(diǎn),與面所成角為,則的范圍為【答案】ABD【解析】【分析】對(duì)于A項(xiàng),轉(zhuǎn)化為,得到的軌跡再求解.對(duì)于BC項(xiàng),根據(jù)平面截圓錐所得的曲線的四種情況解決.對(duì)于D項(xiàng),建立空間直角坐標(biāo)系解決.【詳解】對(duì)于A項(xiàng),正方體中,平面,若為面內(nèi)一點(diǎn),所以.又因?yàn)?,所以,在中,所以故點(diǎn)的軌跡是以為圓心為半徑的個(gè)圓弧,所以點(diǎn)的軌跡長(zhǎng)度為故A正確.對(duì)于B項(xiàng),因?yàn)?,即為定值,線段也為定值,取的中點(diǎn),故點(diǎn)的軌跡是以為軸線,為母線的圓錐的側(cè)面上的點(diǎn).設(shè)平面即為下圖的圓面,過(guò)點(diǎn)作的平行線交圓錐底面于點(diǎn),交于點(diǎn),從圖形可得,易得,故的軌跡為橢圓的一部分,所以B正確.對(duì)于C項(xiàng),平面與軸線所成的角即為平面與所成的角,是平面與軸線所成的角,在中,而母線與軸線所成的角為,在中,即母線與軸線所成的角與截面與軸線所成的角,所以點(diǎn)的軌跡應(yīng)為拋物線,故C不正確.對(duì)于D項(xiàng),以為原點(diǎn),分別為軸的非負(fù)半軸建立如圖所示的坐標(biāo)系,連接并延長(zhǎng)交上底面于點(diǎn),設(shè),則,則,設(shè)面的法向量為所以所以與面所成角的正弦值為又因?yàn)樗?,故D正確.故選:ABD【點(diǎn)睛】用平面去截圓錐所得的曲線可能為,圓、橢圓、拋物線、雙曲線.截面與圓錐軸線成角等于軸線與母線所成的角,截面曲線為拋物線;截面與圓錐軸線成角大于軸線與母線所成的角,截面曲線為橢圓;截面與圓錐軸線成角小于軸線與母線所成的角,截面曲線為雙曲線;截面與軸線垂直得到截面曲線為圓.12.已知函數(shù),,則()A.函數(shù)為偶函數(shù)B.函數(shù)為奇函數(shù)C.函數(shù)為奇函數(shù)D.為函數(shù)函數(shù)圖像的對(duì)稱(chēng)軸【答案】CD【解析】【分析】根據(jù)函數(shù)的的奇偶性定義可判斷A,B,C,根據(jù)對(duì)稱(chēng)軸的性質(zhì)判斷D.【詳解】對(duì)于A,,定義域?yàn)?,所以函?shù)為非奇非偶函數(shù),故A錯(cuò)誤;對(duì)于B,定義域?yàn)椋院瘮?shù)為非奇非偶函數(shù),故B錯(cuò)誤;對(duì)于C,,定義域?yàn)椋O(shè),,所以函數(shù)為奇函數(shù),故C正確;對(duì)于D,設(shè)定義域?yàn)?,,所以為函?shù)函數(shù)圖像對(duì)稱(chēng)軸,故D正確,故選:CD.第二部分非選擇題(共90分)三、填空題(本大題共4小題,每小題5分,共20分)13.已知首項(xiàng)為2的數(shù)列對(duì)滿(mǎn)足,則數(shù)列的通項(xiàng)公式______.【答案】【解析】【分析】構(gòu)造,得到是等比數(shù)列,求出通項(xiàng)公式,進(jìn)而得到.【詳解】設(shè),即,故,解得:,故變形為,,故是首項(xiàng)為4的等比數(shù)列,公比為3,則,所以,故答案為:14.已知直線的方向向量為,點(diǎn)在直線上,則點(diǎn)到直線的距離為_(kāi)_____.【答案】【解析】【分析】求出與直線的方向向量的夾角的余弦,轉(zhuǎn)化為正弦后可得點(diǎn)到直線的距離.【詳解】,,所以,點(diǎn)到的距離為.故答案為:.15.函數(shù)(,)的部分圖象如圖所示,直線()與這部分圖象相交于三個(gè)點(diǎn),橫坐標(biāo)從左到右分別為,,,則______.【答案】【解析】【分析】由圖象求得參數(shù),由交點(diǎn)及余弦函數(shù)的對(duì)稱(chēng)性結(jié)合即可求值【詳解】由圖可知,,即,則,解得,,故.則,最小正周期為.直線()與這部分圖象相交于三個(gè)點(diǎn),橫坐標(biāo)從左到右分別為,,,則由圖可知,.∴.故答案為:16.已知實(shí)數(shù)x、y滿(mǎn)足,則的取值范圍是________.【答案】.【解析】【分析】討論得到其圖象是橢圓,雙曲線的一部分組成圖形,根據(jù)圖象可得的取值范圍,進(jìn)而可得的取值范圍.【詳解】因?yàn)閷?shí)數(shù)滿(mǎn)足,當(dāng)時(shí),方程為的圖象為雙曲線在第一象限的部分;當(dāng)時(shí),方程為的圖象為橢圓在第四象限的部分;當(dāng)時(shí),方程為的圖象不存在;當(dāng)時(shí),方程為的圖象為雙曲線在第三象限的部分;在同一坐標(biāo)系中作出函數(shù)的圖象如圖所示,表示點(diǎn)到直線的距離的倍根據(jù)雙曲線的方程可得,兩條雙曲線的漸近線均為,令,即,與雙曲線漸近線平行,觀察圖象可得,當(dāng)過(guò)點(diǎn)且斜率為的直線與橢圓相切時(shí),點(diǎn)到直線的距離最大,即當(dāng)直線與橢圓相切時(shí),最大,聯(lián)立方程組,得,,解得,又因?yàn)闄E圓的圖象只有第四象限的部分,所以,又直線與的距離為,故曲線上的點(diǎn)到直線的距離大于1,所以綜上所述,,所以,即,故答案為:.四、解答題(本題共6小題,共70分.解答時(shí)應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟)17.在數(shù)列中,,點(diǎn)在直線x-y+3=0上.(1)求數(shù)列的通項(xiàng)公式;(2)為等比數(shù)列,且,記為數(shù)列的前n項(xiàng)和,求.【答案】(1)(2).【解析】【分析】(1)由條件根據(jù)等差數(shù)列定義證明數(shù)列為等差數(shù)列,結(jié)合等差數(shù)列通項(xiàng)公式求其通項(xiàng);(2)由條件求數(shù)列的首項(xiàng)和公比,根據(jù)等比數(shù)列求和公式求.【小問(wèn)1詳解】因?yàn)辄c(diǎn)在直線上,所以,即,所以數(shù)列是以為公差的等差數(shù)列,因?yàn)?,所以,故,所以;【小?wèn)2詳解】設(shè)數(shù)列的公比為,由(1)知,所以,所以,所以.,18.數(shù)學(xué)家歐拉在1765年提出;三角形的外心,重心,垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱(chēng)之為三角形的歐拉線.若的頂點(diǎn)A(2,0),B(0,4),且的歐拉線的方程為,記外接圓圓心記為M.求:(1)圓M的方程;(2)已知圓N:,過(guò)圓M和圓N外一點(diǎn)P分別作兩圓的切線,與圓M切于點(diǎn)A,與圓N切于點(diǎn)B,且,求P點(diǎn)的軌跡方程.【答案】(1)(2)【解析】【分析】(1)由A(2,0),B(0,4),可知AB的中垂線方程為,將其與歐拉線聯(lián)立,可得外心坐標(biāo),后可得外接圓M的方程;(2)設(shè),由題有,,后可得答案.【小問(wèn)1詳解】因,則AB的中點(diǎn)為,又,則AB的中垂線方程為,將其與歐拉線方程聯(lián)立有,解得,故的外心為,則外接圓半徑為,故圓M的方程為.【小問(wèn)2詳解】設(shè),由題有,.因,則.化簡(jiǎn)得:所以點(diǎn)的軌跡方程為:.19.已知平面內(nèi)一動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離多1.(1)求點(diǎn)的軌跡方程;(2)過(guò)點(diǎn)作直線與曲線交于(點(diǎn)在點(diǎn)左側(cè)),求的最小值.【答案】(1)或.(2)20【解析】【分析】(1)設(shè),得即可解決;(2)設(shè)直線為,聯(lián)立方程,結(jié)合韋達(dá)定理得,由基本不等式解決即可.【小問(wèn)1詳解】由題知,動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離多1,設(shè),所以,當(dāng)時(shí),,化簡(jiǎn)得,當(dāng)時(shí),,化簡(jiǎn)得,所以點(diǎn)的軌跡方程為,或..【小問(wèn)2詳解】由題得,過(guò)點(diǎn)作直線與曲線交于(點(diǎn)在點(diǎn)左側(cè)),所以由(1)得,設(shè)直線為,將代入中得,所以,即,,即,所以當(dāng)且僅當(dāng),即時(shí),取等號(hào),所以所以的最小值為20.20.已知正項(xiàng)數(shù)列滿(mǎn)足,且,設(shè).(1)求證:數(shù)列為等比數(shù)列并求的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和.【答案】(1)(2)【解析】【分析】(1)利用化簡(jiǎn)可得數(shù)列是以為公比為首項(xiàng)的等比數(shù)列,求出可得,再利用累乘法求通項(xiàng)公式可得答案;(2)求出利用裂項(xiàng)相消求和可得答案.【小問(wèn)1詳解】因?yàn)?,所以,因?yàn)?,所以,所以,且,所以?shù)列是以為公比,為首項(xiàng)的等比數(shù)列,即,即,可得,,所以時(shí),,即,而此時(shí)時(shí),,所以;【小問(wèn)2詳解】由(1),所以,所以,所以.21.已知四棱錐中,,,,,,面面,.(1)求證:;(2)求面與面所成的二面角的余弦值.【答案】(1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024商場(chǎng)美食節(jié)臨時(shí)攤位租賃合同
- 2024年度健身器材購(gòu)銷(xiāo)合同
- 2024年度國(guó)際貿(mào)易仲裁與訴訟合同
- 2024年定制LED高炮廣告牌建設(shè)合同
- 2024乙公司向甲方提供跨境電商服務(wù)的詳細(xì)合同條款
- 2024年度grc材料研發(fā)與技術(shù)轉(zhuǎn)讓合同
- 航天英雄課件教學(xué)課件
- 2024年住宅租賃協(xié)議:個(gè)人與房東間的權(quán)利義務(wù)規(guī)定
- 04版0千伏電力施工合同樣本
- 2024年工程招投標(biāo)合同管理實(shí)操手冊(cè)
- 護(hù)理專(zhuān)業(yè)人才培養(yǎng)方案
- 小學(xué)生航海知識(shí)講座
- 心電監(jiān)護(hù)并發(fā)癥預(yù)防及處理
- 甲魚(yú)宣傳方案策劃
- 夜班人員的補(bǔ)貼和福利政策
- 河北省石家莊市長(zhǎng)安區(qū)2023-2024學(xué)年五年級(jí)上學(xué)期期末語(yǔ)文試卷
- 直播運(yùn)營(yíng)團(tuán)隊(duì)組織架構(gòu)與各崗位職責(zé)研究
- 慢病管理及遠(yuǎn)程醫(yī)療的應(yīng)用
- 學(xué)校個(gè)性化課程管理制度
- 肺炎支原體性肺炎護(hù)理課件
- 黑色素瘤護(hù)理的課件
評(píng)論
0/150
提交評(píng)論