版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省龍巖市長(zhǎng)汀縣長(zhǎng)汀、連城一中等六校2023-2024學(xué)年高考數(shù)學(xué)四模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.2.已知函數(shù)則函數(shù)的圖象的對(duì)稱(chēng)軸方程為()A. B.C. D.3.某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門(mén)必考科目,“1”指在物理、歷史兩門(mén)科目中必選一門(mén),“2”指在化學(xué)、生物、政治、地理以及除了必選一門(mén)以外的歷史或物理這五門(mén)學(xué)科中任意選擇兩門(mén)學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種4.已知是圓心為坐標(biāo)原點(diǎn),半徑為1的圓上的任意一點(diǎn),將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到交圓于點(diǎn),則的最大值為()A.3 B.2 C. D.5.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.6.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長(zhǎng)度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米7.已知集合,集合,若,則()A. B. C. D.8.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.9.已知點(diǎn),點(diǎn)在曲線上運(yùn)動(dòng),點(diǎn)為拋物線的焦點(diǎn),則的最小值為()A. B. C. D.410.設(shè),則A. B. C. D.11.已知為虛數(shù)單位,若復(fù)數(shù)滿(mǎn)足,則()A. B. C. D.12.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.現(xiàn)有一塊邊長(zhǎng)為a的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為x的小正方形,然后做成一個(gè)無(wú)蓋方盒,該方盒容積的最大值是________.14.已知隨機(jī)變量服從正態(tài)分布,,則__________.15.某高校開(kāi)展安全教育活動(dòng),安排6名老師到4個(gè)班進(jìn)行講解,要求1班和2班各安排一名老師,其余兩個(gè)班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.16.記為數(shù)列的前項(xiàng)和.若,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若不等式恒成立,求實(shí)數(shù)a的取值范圍.18.(12分)已知數(shù)列{an}的各項(xiàng)均為正,Sn為數(shù)列{an}的前n項(xiàng)和,an2+2an=4Sn+1.(1)求{an}的通項(xiàng)公式;(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和.19.(12分)在中,角、、所對(duì)的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.20.(12分)某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過(guò)千分之一,則其生產(chǎn)部門(mén)當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司年的相關(guān)數(shù)據(jù)如下表所示:年份20112012201320142015201620172018年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái))2345671011該產(chǎn)品的年利潤(rùn)(百萬(wàn)元)2.12.753.53.2534.966.5年返修臺(tái)數(shù)(臺(tái))2122286580658488部分計(jì)算結(jié)果:,,,,注:年返修率=(1)從該公司年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門(mén)獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;(2)根據(jù)散點(diǎn)圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(rùn)(百萬(wàn)元)關(guān)于年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái))的線性回歸方程(精確到0.01).附:線性回歸方程中,,.21.(12分)在直角坐標(biāo)系中,圓C的參數(shù)方程(為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓C的極坐標(biāo)方程;(2)直線l的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段的長(zhǎng).22.(10分)已知橢圓的焦距是,點(diǎn)是橢圓上一動(dòng)點(diǎn),點(diǎn)是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn)(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)是拋物線上兩點(diǎn),且處的切線相互垂直,直線與橢圓相交于兩點(diǎn),求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.2、C【解析】
,將看成一個(gè)整體,結(jié)合的對(duì)稱(chēng)性即可得到答案.【詳解】由已知,,令,得.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)的對(duì)稱(chēng)性的問(wèn)題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.3、C【解析】
分兩類(lèi)進(jìn)行討論:物理和歷史只選一門(mén);物理和歷史都選,分別求出兩種情況對(duì)應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門(mén),則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C【點(diǎn)睛】本題主要考查兩個(gè)計(jì)數(shù)原理,熟記其計(jì)數(shù)原理的概念,即可求出結(jié)果,屬于常考題型.4、C【解析】
設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計(jì)算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時(shí),取得等號(hào).故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最值問(wèn)題,涉及到三角函數(shù)的定義、輔助角公式等知識(shí),是一道容易題.5、B【解析】
設(shè),通過(guò),再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點(diǎn)睛】本題考查了向量共線及向量運(yùn)算知識(shí),利用向量共線及向量運(yùn)算知識(shí),用基底向量向量來(lái)表示所求向量,利用平面向量表示法唯一來(lái)解決問(wèn)題.6、B【解析】
由于實(shí)際問(wèn)題中扇形弧長(zhǎng)較小,可將導(dǎo)線的長(zhǎng)視為扇形弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算即可.【詳解】因?yàn)榛¢L(zhǎng)比較短的情況下分成6等分,所以每部分的弦長(zhǎng)和弧長(zhǎng)相差很小,可以用弧長(zhǎng)近似代替弦長(zhǎng),故導(dǎo)線長(zhǎng)度約為63(厘米).故選:B.【點(diǎn)睛】本題主要考查了扇形弧長(zhǎng)的計(jì)算,屬于容易題.7、A【解析】
根據(jù)或,驗(yàn)證交集后求得的值.【詳解】因?yàn)?,所以?當(dāng)時(shí),,不符合題意,當(dāng)時(shí),.故選A.【點(diǎn)睛】本小題主要考查集合的交集概念及運(yùn)算,屬于基礎(chǔ)題.8、D【解析】
設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長(zhǎng)為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.9、D【解析】
如圖所示:過(guò)點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過(guò)點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了拋物線中距離的最值問(wèn)題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.10、C【解析】分析:利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡(jiǎn)復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點(diǎn)睛:復(fù)數(shù)是高考中的必考知識(shí),主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運(yùn)算.要注意對(duì)實(shí)部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運(yùn)算主要考查除法運(yùn)算,通過(guò)分母實(shí)數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運(yùn)算時(shí)特別要注意多項(xiàng)式相乘后的化簡(jiǎn),防止簡(jiǎn)單問(wèn)題出錯(cuò),造成不必要的失分.11、A【解析】分析:題設(shè)中復(fù)數(shù)滿(mǎn)足的等式可以化為,利用復(fù)數(shù)的四則運(yùn)算可以求出.詳解:由題設(shè)有,故,故選A.點(diǎn)睛:本題考查復(fù)數(shù)的四則運(yùn)算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.12、D【解析】
把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的公式計(jì)算得答案.【詳解】解:,則.故選:D.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點(diǎn)也是最大值點(diǎn),此時(shí).故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在實(shí)際問(wèn)題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.14、0.22.【解析】
正態(tài)曲線關(guān)于x=μ對(duì)稱(chēng),根據(jù)對(duì)稱(chēng)性以及概率和為1求解即可?!驹斀狻俊军c(diǎn)睛】本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,是一個(gè)基礎(chǔ)題.15、156【解析】
先考慮每班安排的老師人數(shù),然后計(jì)算出對(duì)應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級(jí)的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個(gè)班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個(gè)班,共有種,所以種.故答案為:.【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,難度一般.對(duì)于分組的問(wèn)題,首先確定每組的數(shù)量,對(duì)于其中特殊元素,可通過(guò)“正難則反”的思想進(jìn)行分析.16、1【解析】
由已知數(shù)列遞推式可得數(shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,再由等比數(shù)列的前項(xiàng)和公式求解.【詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項(xiàng),以為公比的等比數(shù)列,則.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項(xiàng)和,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】
(1)利用分段討論法去掉絕對(duì)值,結(jié)合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問(wèn)題化為,從而求得的取值范圍.【詳解】(1)當(dāng)時(shí),則所以不等式的解集為.(2)等價(jià)于,而,故等價(jià)于,所以或,即或,所以實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查含有絕對(duì)值的不等式解法、不等式恒成立問(wèn)題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類(lèi)討論思想,考查邏輯推理能力、運(yùn)算求解能力,難度一般.18、(1)an=2n+1;(2)2.【解析】
(1)根據(jù)題意求出首項(xiàng),再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得該數(shù)列為等差數(shù)列即可求得通項(xiàng)公式;(2)利用錯(cuò)位相減法進(jìn)行數(shù)列求和.【詳解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+1+1,∴(an+12+2an+1)﹣(an2+2an)=4an+1,整理得:(an+1﹣an)(an+1+an)=2(an+1+an),又∵數(shù)列{an}的各項(xiàng)均為正,∴an+1﹣an=2,∴數(shù)列{an}是首項(xiàng)為1、公差為2的等差數(shù)列,∴數(shù)列{an}的通項(xiàng)公式an=1+2(n﹣1)=2n+1;(2)由(1)可知bn,記數(shù)列{bn}的前n項(xiàng)和為T(mén)n,則Tn=1?5?(2n+1)?,Tn=1?5??…+(2n﹣1)?(2n+1)?,錯(cuò)位相減得:Tn=1+2(?)﹣(2n+1)?=1+2,∴Tn()=2.【點(diǎn)睛】此題考查求等差數(shù)列的基本量,根據(jù)遞推關(guān)系判定等差數(shù)列,根據(jù)錯(cuò)位相減進(jìn)行數(shù)列求和,關(guān)鍵在于熟記方法準(zhǔn)確計(jì)算.19、(1);(2).【解析】
(1)由角的度數(shù)成等差數(shù)列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當(dāng),即時(shí),.【方法點(diǎn)睛】解三角形問(wèn)題基本思想方法:從條件出發(fā),利用正弦定理(或余弦定理)進(jìn)行代換、轉(zhuǎn)化.逐步化為純粹的邊與邊或角與角的關(guān)系,即考慮如下兩條途徑:①統(tǒng)一成角進(jìn)行判斷,常用正弦定理及三角恒等變換;②統(tǒng)一成邊進(jìn)行判斷,常用余弦定理、面積公式等.20、(1)見(jiàn)解析;(2)【解析】
(1)先判斷得到隨機(jī)變量的所有可能取值,然后根據(jù)古典概型概率公式和組合數(shù)計(jì)算得到相應(yīng)的概率,進(jìn)而得到分布列和期望.(2)由于去掉年的數(shù)據(jù)后不影響的值,可根據(jù)表中數(shù)據(jù)求出;然后再根據(jù)去掉年的數(shù)據(jù)后所剩數(shù)據(jù)求出即可得到回歸直線方程.【詳解】(1)由數(shù)據(jù)可知,,,,,五個(gè)年份考核優(yōu)秀.由題意的所有可能取值為,,,,,,,.故的分布列為:所以.(2)因?yàn)?,所以去掉年的?shù)據(jù)后不影響的值,所以.又去掉年的數(shù)據(jù)之后,所以,從而回歸方程為:.【點(diǎn)睛】求線性回歸方程時(shí)要涉及到大量的計(jì)算,所以在解題時(shí)要注意運(yùn)算的合理性和正確性,對(duì)于題目中給出的中間數(shù)據(jù)要合理利用.本題考查概率和統(tǒng)計(jì)的結(jié)合,這也是高考中常出現(xiàn)的題型,屬于基礎(chǔ)題.21、(1);(2)2【解析】
(1)首先利用對(duì)圓C的參數(shù)方程(φ為參數(shù))進(jìn)行消參數(shù)運(yùn)算,化為普通方程,再根據(jù)普通方程化極坐標(biāo)方程的公式得到圓C的極坐標(biāo)方程.(2)設(shè),聯(lián)立直線與圓的極坐標(biāo)方程,解得;設(shè),聯(lián)立直線與直線的極坐標(biāo)方程,解得,可得.【詳解】(1)圓C的普通方程為,又,所以圓C的極坐標(biāo)方程為.(2)設(shè),則由解得,,得;設(shè),則由解得,,得;所以【點(diǎn)睛】本題考查圓的參數(shù)方程與普通方程的互化,考查圓的極坐標(biāo)方程,考查極坐標(biāo)方程的求解運(yùn)算,考查了學(xué)生的計(jì)算能力以及轉(zhuǎn)化能力,屬于基礎(chǔ)題.22、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)設(shè)點(diǎn)的坐標(biāo),表達(dá)出直線的斜率之積,再根據(jù)三點(diǎn)均在橢圓上,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 便攜式探照燈產(chǎn)品供應(yīng)鏈分析
- 大數(shù)據(jù)分析及應(yīng)用項(xiàng)目教程(Spark SQL)(微課版) 實(shí)訓(xùn)單 實(shí)訓(xùn)1 Hadoop集群環(huán)境搭建
- 光學(xué)閱讀機(jī)產(chǎn)品供應(yīng)鏈分析
- 外語(yǔ)學(xué)習(xí)書(shū)籍出版行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 云梯游樂(lè)設(shè)施產(chǎn)品供應(yīng)鏈分析
- 臨時(shí)性商業(yè)管理行業(yè)經(jīng)營(yíng)分析報(bào)告
- 廢物化學(xué)處理行業(yè)經(jīng)營(yíng)分析報(bào)告
- 電動(dòng)和非電動(dòng)潔面刷商業(yè)機(jī)會(huì)挖掘與戰(zhàn)略布局策略研究報(bào)告
- 主要負(fù)責(zé)人年度安全生產(chǎn)工作述職報(bào)告
- 《采集能量》學(xué)歷案
- 醫(yī)保培訓(xùn)記錄表
- 支氣管鏡精品課件
- 房屋建筑物構(gòu)筑物檢查表格
- 高考語(yǔ)文詩(shī)歌專(zhuān)題鑒賞之比較類(lèi)詩(shī)歌鑒賞 課件24張
- 對(duì)邊境立體化防控體系建設(shè)的幾點(diǎn)思考
- 農(nóng)林項(xiàng)目投資實(shí)驗(yàn):財(cái)務(wù)分析與經(jīng)濟(jì)分析綜合練習(xí)
- 需求階段進(jìn)度報(bào)告
- 特種設(shè)備風(fēng)險(xiǎn)分級(jí)管控清單(叉車(chē))
- 翰文平面圖繪制系統(tǒng)教學(xué)教程
- 初中語(yǔ)文 統(tǒng)編版 九年級(jí)上冊(cè) 第22課《范進(jìn)中舉》 課件
- 高血壓的健康管理方案
評(píng)論
0/150
提交評(píng)論