山東聊城市陽谷實驗中學2024年中考數(shù)學最后一模試卷含解析_第1頁
山東聊城市陽谷實驗中學2024年中考數(shù)學最后一模試卷含解析_第2頁
山東聊城市陽谷實驗中學2024年中考數(shù)學最后一模試卷含解析_第3頁
山東聊城市陽谷實驗中學2024年中考數(shù)學最后一模試卷含解析_第4頁
山東聊城市陽谷實驗中學2024年中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東聊城市陽谷實驗中學2024年中考數(shù)學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在平面直角坐標系中,是反比例函數(shù)的圖像上一點,過點做軸于點,若的面積為2,則的值是()A.-2 B.2 C.-4 D.42.如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.123.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°4.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.5.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉,使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°6.一組數(shù)據(jù):3,2,5,3,7,5,x,它們的眾數(shù)為5,則這組數(shù)據(jù)的中位數(shù)是()A.2 B.3 C.5 D.77.已知兩點都在反比例函數(shù)圖象上,當時,,則的取值范圍是()A. B. C. D.8.數(shù)據(jù)3、6、7、1、7、2、9的中位數(shù)和眾數(shù)分別是()A.1和7 B.1和9 C.6和7 D.6和99.下列判斷正確的是()A.任意擲一枚質地均勻的硬幣10次,一定有5次正面向上B.天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數(shù),|a|≥0”是不可能事件10.下列計算正確的是()A.a2?a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a1011.下列各數(shù)中比﹣1小的數(shù)是()A.﹣2 B.﹣1 C.0 D.112.如圖,在矩形ABCD中,連接BD,點O是BD的中點,若點M在AD邊上,連接MO并延長交BC邊于點M’,連接MB,DM’則圖中的全等三角形共有()A.3對 B.4對 C.5對 D.6對二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內切圓半徑為__________.14.如圖,AB為⊙O的直徑,BC為⊙O的弦,點D是劣弧AC上一點,若點E在直徑AB另一側的半圓上,且∠AED=27°,則∠BCD的度數(shù)為_______.15.中,,,高,則的周長為______。16.一組數(shù):2,1,3,,7,,23,…,滿足“從第三個數(shù)起,前兩個數(shù)依次為、,緊隨其后的數(shù)就是”,例如這組數(shù)中的第三個數(shù)“3”是由“”得到的,那么這組數(shù)中表示的數(shù)為______.17.分式方程=1的解為_________.18.在某公益活動中,小明對本年級同學的捐款情況進行了統(tǒng)計,繪制成如圖所示的不完整的統(tǒng)計圖,其中捐10元的人數(shù)占年級總人數(shù)的25%,則本次捐款20元的人數(shù)為______人.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)對于平面上兩點A,B,給出如下定義:以點A或B為圓心,AB長為半徑的圓稱為點A,B的“確定圓”.如圖為點A,B的“確定圓”的示意圖.(1)已知點A的坐標為(-1,0),點B的坐標為(3,3),則點A,B的“確定圓”的面積為______;(2)已知點A的坐標為(0,0),若直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,求點B的坐標;(3)已知點A在以P(m,0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.20.(6分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對A1,A2,A3,A4統(tǒng)計后,制成如圖所示的統(tǒng)計圖.(1)求七年級已“建檔立卡”的貧困家庭的學生總人數(shù);(2)將條形統(tǒng)計圖補充完整,并求出A1所在扇形的圓心角的度數(shù);(3)現(xiàn)從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.21.(6分)先化簡,再求值:÷,其中m是方程x2+2x-3=0的根.22.(8分)某單位為了擴大經營,分四次向社會進行招工測試,測試后對成績合格人數(shù)與不合格人數(shù)進行統(tǒng)計,并繪制成如圖所示的不完整的統(tǒng)計圖.(1)測試不合格人數(shù)的中位數(shù)是.(2)第二次測試合格人數(shù)為50人,到第四次測試合格人數(shù)為每次測試不合格人數(shù)平均數(shù)的2倍少18人,若這兩次測試的平均增長率相同,求平均增長率;(3)在(2)的條件下補全條形統(tǒng)計圖和扇形統(tǒng)計圖.23.(8分)如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當AB=5cm,AC=12cm時,求線段PC的長.24.(10分)已知關于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實數(shù)根x1,x1.求實數(shù)k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實數(shù)k的值.25.(10分)如圖,在航線l的兩側分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.(1)求觀測點B到航線的距離;(2)求該輪船航行的速度(結果精確到0.1km/h).(參考數(shù)據(jù):≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)26.(12分)已知,拋物線的頂點為,它與軸交于點,(點在點左側).()求點、點的坐標;()將這個拋物線的圖象沿軸翻折,得到一個新拋物線,這個新拋物線與直線交于點.①求證:點是這個新拋物線與直線的唯一交點;②將新拋物線位于軸上方的部分記為,將圖象以每秒個單位的速度向右平移,同時也將直線以每秒個單位的速度向上平移,記運動時間為,請直接寫出圖象與直線有公共點時運動時間的范圍.27.(12分)閱讀材料,解答問題.材料:“小聰設計的一個電子游戲是:一電子跳蚤從這P1(﹣3,9)開始,按點的橫坐標依次增加1的規(guī)律,在拋物線y=x2上向右跳動,得到點P2、P3、P4、P5…(如圖1所示).過P1、P2、P3分別作P1H1、P2H2、P3H3垂直于x軸,垂足為H1、H2、H3,則S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面積為1.”問題:(1)求四邊形P1P2P3P4和P2P3P4P5的面積(要求:寫出其中一個四邊形面積的求解過程,另一個直接寫出答案);(2)猜想四邊形Pn﹣1PnPn+1Pn+2的面積,并說明理由(利用圖2);(3)若將拋物線y=x2改為拋物線y=x2+bx+c,其它條件不變,猜想四邊形Pn﹣1PnPn+1Pn+2的面積(直接寫出答案).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)反比例函數(shù)k的幾何意義,求出k的值即可解決問題【詳解】解:∵過點P作PQ⊥x軸于點Q,△OPQ的面積為2,

∴||=2,

∵k<0,

∴k=-1.

故選:C.【點睛】本題考查反比例函數(shù)k的幾何意義,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.2、C【解析】

設B點的坐標為(a,b),由BD=3AD,得D(,b),根據(jù)反比例函數(shù)定義求出關鍵點坐標,根據(jù)S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數(shù)的圖象上,∴=k,∴E(a,

),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點睛】考核知識點:反比例函數(shù)系數(shù)k的幾何意義.結合圖形,分析圖形面積關系是關鍵.3、C【解析】

根據(jù)DE∥AB可求得∠CDE=∠B解答即可.【詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【點睛】本題主要考查平行線的性質:兩直線平行,同位角相等.快速解題的關鍵是牢記平行線的性質.4、D【解析】

根據(jù)正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數(shù)互為相反數(shù)可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.5、B【解析】

根據(jù)旋轉的性質得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉的性質,全等三角形的性質和判定,三角形內角和定理,三角形外角性質的應用,掌握旋轉變換的性質是解題的關鍵.6、C【解析】分析:眾數(shù)是指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù),一組數(shù)據(jù)可以有多個眾數(shù),也可以沒有眾數(shù);中位數(shù)是指將數(shù)據(jù)按大小順序排列起來形成一個數(shù)列,居于數(shù)列中間位置的那個數(shù)據(jù).根據(jù)定義即可求出答案.詳解:∵眾數(shù)為5,∴x=5,∴這組數(shù)據(jù)為:2,3,3,5,5,5,7,∴中位數(shù)為5,故選C.點睛:本題主要考查的是眾數(shù)和中位數(shù)的定義,屬于基礎題型.理解他們的定義是解題的關鍵.7、B【解析】

根據(jù)反比例函數(shù)的性質判斷即可.【詳解】解:∵當x1<x2<0時,y1<y2,

∴在每個象限y隨x的增大而增大,

∴k<0,

故選:B.【點睛】本題考查了反比例函數(shù)的性質,解題的關鍵是熟練掌握反比例函數(shù)的性質.8、C【解析】

如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).【詳解】解:∵7出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是7;∵從小到大排列后是:1,2,3,6,7,7,9,排在中間的數(shù)是6,∴中位數(shù)是6故選C.【點睛】本題考查了中位數(shù)和眾數(shù)的求法,解答本題的關鍵是熟練掌握中位數(shù)和眾數(shù)的定義.9、C【解析】

直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數(shù),|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關定義是解題關鍵.10、B【解析】

根據(jù)同底數(shù)冪乘法、冪的乘方的運算性質計算后利用排除法求解.【詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【點睛】本題綜合考查了整式運算的多個考點,包括同底數(shù)冪的乘法、冪的乘方、合并同類項,需熟練掌握且區(qū)分清楚,才不容易出錯.11、A【解析】

根據(jù)兩個負數(shù)比較大小,絕對值大的負數(shù)反而小,可得答案.【詳解】解:A、﹣2<﹣1,故A正確;B、﹣1=﹣1,故B錯誤;C、0>﹣1,故C錯誤;D、1>﹣1,故D錯誤;故選:A.【點睛】本題考查了有理數(shù)大小比較,利用了正數(shù)大于0,0大于負數(shù),注意兩個負數(shù)比較大小,絕對值大的負數(shù)反而?。?2、D【解析】

根據(jù)矩形的對邊平行且相等及其對稱性,即可寫出圖中的全等三角形的對數(shù).【詳解】圖中圖中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故選D.【點睛】此題主要考查矩形的性質及全等三角形的判定,解題的關鍵是熟知矩形的對稱性.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù)△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據(jù)直角三角形的性質即可求出△AEF的內切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,

∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,

∴∠1+∠2=∠2+∠3=120°,∠1=∠3;

在△AEF和△CFD中,,

∴△AEF≌△CFD(AAS);

同理可證:△AEF≌△CFD≌△BDE;

∴BE=AF,即AE+AF=AE+BE=a.

設M是△AEF的內心,過點M作MH⊥AE于H,

則根據(jù)圖1的結論得:AH=(AE+AF-EF)=(a-b);

∵MA平分∠BAC,

∴∠HAM=30°;

∴HM=AH?tan30°=(a-b)?=故答案為:.【點睛】本題主要考查的是三角形的內切圓、等邊三角形的性質、全等三角形的性質和判定,切線的性質,圓的切線長定理,根據(jù)已知得出AH的長是解題關鍵.14、117°【解析】

連接AD,BD,利用圓周角定理解答即可.【詳解】連接AD,BD,∵AB為⊙O的直徑,∴∠ADB=90°,∵∠AED=27°,∴∠DBA=27°,∴∠DAB=90°-27°=63°,∴∠DCB=180°-63°=117°,故答案為117°【點睛】此題考查圓周角定理,關鍵是根據(jù)圓周角定理解答.15、32或42【解析】

根據(jù)題意,分兩種情況討論:①若∠ACB是銳角,②若∠ACB是鈍角,分別畫出圖形,利用勾股定理,即可求解.【詳解】分兩種情況討論:①若∠ACB是銳角,如圖1,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9+5+15+13=42,②若∠ACB是鈍角,如圖2,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9-5+15+13=32,故答案是:32或42.【點睛】本題主要考查勾股定理,根據(jù)題意,畫出圖形,分類進行計算,是解題的關鍵.16、-9.【解析】

根據(jù)題中給出的運算法則按照順序求解即可.【詳解】解:根據(jù)題意,得:,.故答案為:-9.【點睛】本題考查了有理數(shù)的運算,理解題意、弄清題目給出的運算法則是正確解題的關鍵.17、x=1【解析】分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.詳解:兩邊都乘以x+4,得:3x=x+4,解得:x=1,檢驗:x=1時,x+4=6≠0,所以分式方程的解為x=1,故答案為:x=1.點睛:此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.18、35【解析】分析:根據(jù)捐款10元的人數(shù)占總人數(shù)25%可得捐款總人數(shù),將總人數(shù)減去其余各組人數(shù)可得答案.詳解:根據(jù)題意可知,本年級捐款捐款的同學一共有20÷25%=80(人),則本次捐款20元的有:80?(20+10+15)=35(人),故答案為:35.點睛:本題考查了條形統(tǒng)計圖.計算出捐款總人數(shù)是解決問題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)25π;(2)點B的坐標為或;(3)m≤-5或m≥2【解析】

(1)根據(jù)勾股定理,可得AB的長,根據(jù)圓的面積公式,可得答案;(2)根據(jù)確定圓,可得l與⊙A相切,根據(jù)圓的面積,可得AB的長為3,根據(jù)等腰直角三角形的性質,可得,可得答案;(3)根據(jù)圓心與直線垂直時圓心到直線的距離最短,根據(jù)確定圓的面積,可得PB的長,再根據(jù)30°的直角邊等于斜邊的一半,可得CA的長.【詳解】(1)(1)∵A的坐標為(?1,0),B的坐標為(3,3),∴AB==5,根據(jù)題意得點A,B的“確定圓”半徑為5,∴S圓=π×52=25π.故答案為25π;(2)∵直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,∴⊙A的半徑AB=3且直線y=x+b與⊙A相切于點B,如圖,∴AB⊥CD,∠DCA=45°.,①當b>0時,則點B在第二象限.過點B作BE⊥x軸于點E,∵在Rt△BEA中,∠BAE=45°,AB=3,∴.∴.②當b<0時,則點B'在第四象限.同理可得.綜上所述,點B的坐標為或.(3)如圖2,,直線當y=0時,x=3,即C(3,0).∵tan∠BCP=,∴∠BCP=30°,∴PC=2PB.P到直線的距離最小是PB=4,∴PC=1.3-1=-5,P1(-5,0),3+1=2,P(2,0),當m≤-5或m≥2時,PD的距離大于或等于4,點A,B的“確定圓”的面積都不小于9π.點A,B的“確定圓”的面積都不小于9π,m的范圍是m≤-5或m≥2.【點睛】本題考查了一次函數(shù)綜合題,解(1)的關鍵是利用勾股定理得出AB的長;解(2)的關鍵是等腰直角三角形的性質得出;解(3)的關鍵是利用30°的直角邊等于斜邊的一半得出PC=2PB.20、(1)15人;(2)補圖見解析.(3)12【解析】

(1)根據(jù)三班有6人,占的百分比是40%,用6除以所占的百分比即可得總人數(shù);(2)用總人數(shù)減去一、三、四班的人數(shù)得到二班的人數(shù)即可補全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數(shù);(3)根據(jù)題意畫出樹狀圖,得出所有可能,進而求恰好選出一名男生和一名女生的概率.【詳解】解:(1)七年級已“建檔立卡”的貧困家庭的學生總人數(shù):6÷40%=15人;(2)A2的人數(shù)為15﹣2﹣6﹣4=3(人)補全圖形,如圖所示,A1所在圓心角度數(shù)為:215(3)畫出樹狀圖如下:共6種等可能結果,符合題意的有3種∴選出一名男生一名女生的概率為:P=36【點睛】本題考查了條形圖與扇形統(tǒng)計圖,概率等知識,準確識圖,從圖中發(fā)現(xiàn)有用的信息,正確根據(jù)已知畫出樹狀圖得出所有可能是解題關鍵.21、原式=,當m=l時,原式=【解析】先通分計算括號里的,再計算括號外的,化為最簡,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整體代入化簡后的式子,計算即可.解:原式=∵x2+2x-3=0,∴x1=-3,x2=1∵‘m是方程x2+2x-3=0的根,∴m=-3或m=1∵m+3≠0,∴.m≠-3,∴m=1當m=l時,原式:“點睛”本題考查了分式的化簡求值、一元二次方程的解,解題的關鍵是通分、約分,以及分子分母的因式分解、整體代入.22、(1)1;(2)這兩次測試的平均增長率為20%;(3)55%.【解析】

(1)將四次測試結果排序,結合中位數(shù)的定義即可求出結論;(2)由第四次測試合格人數(shù)為每次測試不合格人數(shù)平均數(shù)的2倍少18人,可求出第四次測試合格人數(shù),設這兩次測試的平均增長率為x,由第二次、第四次測試合格人數(shù),即可得出關于x的一元二次方程,解之取其中的正值即可得出結論;(3)由第二次測試合格人數(shù)結合平均增長率,可求出第三次測試合格人數(shù),根據(jù)不合格總人數(shù)÷參加測試的總人數(shù)×100%即可求出不合格率,進而可求出合格率,再將條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整,此題得解.【詳解】解:(1)將四次測試結果排序,得:30,40,50,60,∴測試不合格人數(shù)的中位數(shù)是(40+50)÷2=1.故答案為1;(2)∵每次測試不合格人數(shù)的平均數(shù)為(60+40+30+50)÷4=1(人),∴第四次測試合格人數(shù)為1×2﹣18=72(人).設這兩次測試的平均增長率為x,根據(jù)題意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合題意,舍去),∴這兩次測試的平均增長率為20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.補全條形統(tǒng)計圖與扇形統(tǒng)計圖如解圖所示.【點睛】本題考查了一元二次方程的應用、扇形統(tǒng)計圖、條形統(tǒng)計圖、中位數(shù)以及算術平均數(shù),解題的關鍵是:(1)牢記中位數(shù)的定義;(2)找準等量關系,正確列出一元二次方程;(3)根據(jù)數(shù)量關系,列式計算求出統(tǒng)計圖中缺失數(shù)據(jù).23、(1)證明見解析;(2)證明見解析;(3)CP=16.9cm.【解析】【分析】(1)先判斷出∠BAC=2∠BAD,進而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結論.【詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半徑,∴PD是⊙O的切線;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直徑,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【點睛】本題考查了切線的判定、相似三角形的判定與性質等,熟練掌握切線的判定方法、相似三角形的判定與性質定理是解題的關鍵.24、(2)k≤;(2)-2.【解析】試題分析:(2)根據(jù)方程的系數(shù)結合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實數(shù)k的取值范圍;(2)由根與系數(shù)的關系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實數(shù)k的取值范圍為k≤.(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實數(shù)k的值為﹣2.考點:一元二次方程根與系數(shù)的關系,根的判別式.25、(1)觀測點到航線的距離為3km(2)該輪船航行的速度約為40.6km/h【解析】試題分析:(1)設AB與l交于點O,利用∠DAO=60°,利用∠DAO的余弦求出OA長,從而求得OB長,繼而求得BE長即可;(2)先計算出DE=EF+DF=求出DE=5,再由進而由tan∠CBE=求出EC,即可求出CD的長,進而求出航行速度.試題解析:(1)設AB與l交于點O,在Rt△AOD中,∵∠OAD=60°,AD=2(km),∴OA==4(km),∵AB=10(km),∴OB=AB﹣OA=6(km),在Rt△BOE中,∠OBE=∠OAD=60°,∴BE=OB?cos60°=3(km),答:觀測點B到航線l的距離為3km;(2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2,∵∠BEO=90°,BO=6,BE=3,∴OE==3,∴DE=OD+OE=5(km);CE=BE?tan∠CBE=3tan76°,∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),∵5(min)=(h),∴v==12CD=12×3.38≈40.6(km/h),答:該輪船航行的速度約為40.6km/h.【點睛】本題主要考查了方向角問題以及利用銳角三角函數(shù)關系得出EC,DE,DO的長是解題關鍵.26、(1)B(-3,0),C(1,0);(2)①見解析;②≤t≤6.【解析】

(1)根據(jù)拋物線的頂點坐標列方程,即可求得拋物線的解析式,令y=0,即可得解;(2)①根據(jù)翻折的性質寫出翻折后的拋物線的解析式,與直線方程聯(lián)立,求得交點坐標即可;②當t=0時,直線與拋物線只有一個交點N(3,-6)(相切),此時直線與G無交點;第一個交點出現(xiàn)時,直線過點C(1+t,0),代入直線解析式:y=-4x+6+t,解得t=;最后一個交點是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.【詳解】(1)因為拋物線的頂點為M(-1,-2),所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論